Detecting horizontal gene transfer: a probabilistic approach

Author:

Sevillya Gur,Adato Orit,Snir Sagi

Abstract

Abstract Background Horizontal gene transfer (HGT) is the event of a DNA sequence being transferred between species not by inheritance. HGT is a crucial factor in prokaryotic evolution and is a significant source for genomic novelty resulting in antibiotic resistance or the outbreak of virulent strains. Detection of HGT and the mechanisms responsible and enabling it, is hence of prime importance.Existing algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from its recipient genome. Closely related species pose an even greater challenge as most genes are very similar and therefore, the phylogenetic signal is weak anyhow. Notwithstanding, the importance of detecting HGT between such organisms is extremely high for the role of HGT in the emergence of new highly virulent strains. Results In a recent work we devised a novel technique that relies on loss of synteny around a gene as a witness for HGT. We used a novel heuristic for synteny measurement, SI (Syntent Index), and the technique was tested on both simulated and real data and was found to provide a greater sensitivity than other HGT techniques. This synteny–based approach suffers low specificity, in particular more closely related species. Here we devise an adaptive approach to cope with this by varying the criteria according to species distance. The new approach is doubly adaptive as it also considers the lengths of the genes being transferred. In particular, we use Chernoff bound to decree HGT both in simulations and real bacterial genomes taken from EggNog database. Conclusions Here we show empirically that this approach is more conservative than the previous χ2 based approach and provides a lower false positive rate, especially for closely related species and under wide range of genome parameters.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3