Abstract
Abstract
Background
Cotton Verticillium wilt is one of the most devastating diseases for cotton production in the world. Although this diseases have been widely studied at the molecular level from pathogens, the molecular basis of V. dahliae interacted with cotton has not been well examined.
Results
In this study, RNA-seq analysis was carried out on V. dahliae samples cultured by different root exudates from three cotton cultivars (a susceptible upland cotton cultivar, a tolerant upland cotton cultivar and a resistant island cotton cultivar) and water for 0 h, 6 h, 12 h, 24 h and 48 h. Statistical analysis of differentially expressed genes revealed that V. dahliae responded to all kinds of root exudates but more strongly to susceptible cultivar than to tolerant and resistant cultivars. Go analysis indicated that ‘hydrolase activity, hydrolyzing O-glycosyl compounds’ related genes were highly enriched in V. dahliae cultured by root exudates from susceptible cotton at early stage of interaction, suggesting genes related to this term were closely related to the pathogenicity of V. dahliae. Additionally, ‘transmembrane transport’, ‘coenzyme binding’, ‘NADP binding’, ‘cofactor binding’, ‘oxidoreductase activity’, ‘flavin adenine dinucleotide binding’, ‘extracellular region’ were commonly enriched in V. dahliae cultured by all kinds of root exudates at early stage of interaction (6 h and 12 h), suggesting that genes related to these terms were required for the initial steps of the roots infections.
Conclusions
Based on the GO analysis results, the early stage of interaction (6 h and 12 h) were considered as the critical stage of V. dahliae-cotton interaction. Comparative transcriptomic analysis detected that 31 candidate genes response to root exudates from cotton cultivars with different level of V. dahliae resistance, 68 response to only susceptible cotton cultivar, and 26 genes required for development of V. dahliae. Collectively, these expression data have advanced our understanding of key molecular events in the V. dahliae interacted with cotton, and provided a framework for further functional studies of candidate genes to develop better control strategies for the cotton wilt disease.
Funder
the National Key Research and Development Program of China
the Genetically Modified Organisms Breeding Major Project of China
Publisher
Springer Science and Business Media LLC
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献