Impact of PNPase on the transcriptome of Rhodobacter sphaeroides and its cooperation with RNase III and RNase E

Author:

Spanka Daniel-Timon,Reuscher Carina Maria,Klug GabrieleORCID

Abstract

Abstract Background The polynucleotide phosphorylase (PNPase) is conserved among both Gram-positive and Gram-negative bacteria. As a core part of the Escherichia coli degradosome, PNPase is involved in maintaining proper RNA levels within the bacterial cell. It plays a major role in RNA homeostasis and decay by acting as a 3′-to-5′ exoribonuclease. Furthermore, PNPase can catalyze the reverse reaction by elongating RNA molecules in 5′-to-3′ end direction which has a destabilizing effect on the prolonged RNA molecule. RNA degradation is often initiated by an endonucleolytic cleavage, followed by exoribonucleolytic decay from the new 3′ end. Results The PNPase mutant from the facultative phototrophic Rhodobacter sphaeroides exhibits several phenotypical characteristics, including diminished adaption to low temperature, reduced resistance to organic peroxide induced stress and altered growth behavior. The transcriptome composition differs in the pnp mutant strain, resulting in a decreased abundance of most tRNAs and rRNAs. In addition, PNPase has a major influence on the half-lives of several regulatory sRNAs and can have both a stabilizing or a destabilizing effect. Moreover, we globally identified and compared differential RNA 3′ ends in RNA NGS sequencing data obtained from PNPase, RNase E and RNase III mutants for the first time in a Gram-negative organism. The genome wide RNA 3′ end analysis revealed that 885 3′ ends are degraded by PNPase. A fair percentage of these RNA 3′ ends was also identified at the same genomic position in RNase E or RNase III mutant strains. Conclusion The PNPase has a major influence on RNA processing and maturation and thus modulates the transcriptome of R. sphaeroides. This includes sRNAs, emphasizing the role of PNPase in cellular homeostasis and its importance in regulatory networks. The global 3′ end analysis indicates a sequential RNA processing: 5.9% of all RNase E-dependent and 9.7% of all RNase III-dependent RNA 3′ ends are subsequently degraded by PNPase. Moreover, we provide a modular pipeline which greatly facilitates the identification of RNA 5′/3′ ends. It is publicly available on GitHub and is distributed under ICS license.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3