Author:
Xiao Yao,Yi Fei,Ling Juanjuan,Yang Guijuan,Lu Na,Jia Zirui,Wang Junchen,Zhao Kun,Wang Junhui,Ma Wenjun
Abstract
Abstract
Background
Phytohormones are the key factors regulating vascular development in plants, and they are also involved in tension wood (TW) formation. Although the theory of hormone distribution in TW formation is widely supported, the effects of endogenous hormones on TW formation have not yet been assessed. In this study, TW formation was induced in Catalpa bungei by artificial bending. The phytohormone content of TW, opposite wood (OW) and normal wood (NW) was determined using liquid chromatography-mass spectrometry (LC-MS), and transcriptome sequencing was performed. The hormone content and related gene expression data were comprehensively analyzed.
Results
The results of analyses of the plant hormone contents indicated significantly higher levels of cis-zeatin (cZ), indoleacetic acid (IAA) and abscisic acid (ABA) in TW than in OW. Genes involved in the IAA and ABA synthesis pathways, such as ALDH (evm.model.group5.1511) and UGT (evm.model.scaffold36.20), were significantly upregulated in TW. and the expression levels of ARF (evm.model.group5.1332), A-ARR (evm.model.group0.1600), and TCH4 (evm.model.group2.745), which participate in IAA, cZ and Brassinolide (BR) signal transduction, were significantly increased in TW. In particular, ARF expression may be regulated by long noncoding RNAs (lncRNAs) and the HD-ZIP transcription factor ATHB-15.
Conclusions
We constructed a multiple hormone-mediated network of C. bungei TW formation based on hormone levels and transcriptional expression profiles were identified during TW formation.
Funder
National Key Research and Development Project of China “The genomic basis of secondary growth in trees”
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献