Genomics and lipidomics analysis of the biotechnologically important oleaginous red yeast Rhodotorula glutinis ZHK provides new insights into its lipid and carotenoid metabolism

Author:

Li Chun-Ji,Zhao Die,Cheng Ping,Zheng Li,Yu Guo-HuiORCID

Abstract

Abstract Background Rhodotorula glutinis is recognized as a biotechnologically important oleaginous red yeast, which synthesizes numerous meritorious compounds with wide industrial usages. One of the most notable properties of R. glutinis is the formation of intracellular lipid droplets full of carotenoids. However, the basic genomic features that underlie the biosynthesis of these valuable compounds in R. glutinis have not been fully documented. To reveal the biotechnological potential of R. glutinis, the genomics and lipidomics analysis was performed through the Next-Generation Sequencing and HPLC-MS-based metabolomics technologies. Results Here, we firstly assemble the genome of R. glutinis ZHK into 21.8 Mb, containing 30 scaffolds and 6774 predicted genes with a N50 length of 14, 66,672 bp and GC content of 67.8%. Genome completeness assessment (BUSCO alignment: 95.3%) indicated the genome assembly with a high-quality features. According to the functional annotation of the genome, we predicted several key genes involved in lipids and carotenoids metabolism as well as certain industrial enzymes biosynthesis. Comparative genomics results suggested that most of orthologous genes have underwent the strong purifying selection within the five Rhodotorula species, especially genes responsible for carotenoids biosynthesis. Furthermore, a total of 982 lipids were identified using the lipidomics approaches, mainly including triacylglycerols, diacylglyceryltrimethylhomo-ser and phosphatidylethanolamine. Conclusion Using whole genome shotgun sequencing, we comprehensively analyzed the genome of R. glutinis and predicted several key genes involved in lipids and carotenoids metabolism. By performing comparative genomic analysis, we show that most of the ortholog genes have undergone strong purifying selection within the five Rhodotorula species. Furthermore, we identified 982 lipid species using lipidomic approaches. These results provided valuable resources to further advance biotechnological applications of R .glutinis.

Funder

Starting Research Fund from Zhongkai University of Agriculture and Engineering

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference84 articles.

1. Gadanho M, Sampaio JP. Polyphasic taxonomy of the basidiomycetous yeast genus Rhodotorula: Rh. glutinis sensu stricto and Rh. dairenensis comb. nov. FEMS Yeast Res. 2002;2(1):47–58.

2. Sampaio JP: Chapter 155 - Rhodotorula Harrison (1928). In Kurtzman CP, Fell JW, Boekhout T (eds): the yeasts (5th edition). In. London: Elsevier; 2011: 1873–1927.

3. Tang W, Wang Y, Zhang J, Cai Y, He Z. Biosynthetic pathway of carotenoids in Rhodotorula and strategies for enhanced their production. J Microbiol Biotechnol. 2019;29(4):507.

4. Lyman M, Urbin S, Stroutand C, Rubinfeld B. The oleaginous red yeast Rhodotorula/Rhodosporidium: a factory for industrial bioproducts: yeasts in biotechnology. In. London: IntechOpen; 2019.

5. Kuan I, Kao W, Chen C, Yu C. Microbial biodiesel production by direct transesterification of Rhodotorula glutinis biomass. Energies. 2018;11(5):1036.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3