Author:
Fu Yin,Zhang Kaihui,Shan Fa,Li Junqiang,Wang Yilin,Li Xiaoying,Xu Huiyan,Qin Ziyang,Zhang Longxian
Abstract
Abstract
Background
With the promotion of “One Health,” the health of animals and their impact on the environment have become major concerns recently. Widely distributed in China, the whooper swans (Cygnus cygnus) and black swans (Cygnus atratus) are not only important to the ecological environment, but they may also potentially influence public health security. The metagenomic approach was adopted to uncover the impacts of the gut microbiota of swans on host and public health.
Results
In this study, the intestinal microbiome and resistome of migratory whooper swans and captive-bred black swans were identified. The results revealed similar gut microbes and functional compositions in whooper and black swans. Interestingly, different bacteria and probiotics were enriched by overwintering whooper swans. We also found that Acinetobacter and Escherichia were significantly enriched in early wintering period swans and that clinically important pathogens were more abundant in black swans. Whooper swans and black swans are potential reservoirs of antibiotic resistance genes (ARGs) and novel ARGs, and the abundance of novel ARGs in whooper swans was significantly higher than that in black swans. Metagenomic assembly–based host tracking revealed that most ARG-carrying contigs originated from Proteobacteria (mainly Gammaproteobacteria).
Conclusions
The results revealed spatiotemporal changes in microbiome and resistome in swans, providing a reference for safeguarding public health security and preventing animal epidemics.
Funder
Key program of National Natural Science Foundation of China - Henan Province Joint Fund
National Key Research and Development Program of China
Leading Talents of Thousand Talents Program of Central China
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献