The DNA methylation status of the serotonin metabolic pathway associated with reproductive inactivation induced by long-light exposure in Magang geese

Author:

Liu Jiaxin,Xu Yanglong,Wang Yushuai,Zhang Jinning,Fu Yuting,Liufu Sui,Jiang Danli,Pan Jianqiu,Ouyang Hongjia,Huang Yunmao,Tian Yunbo,Shen Xu

Abstract

Abstract Background Domestic geese are seasonal breeders and have the lowest reproductive capacity among all poultry species. Magang geese is a topical short-day breeder, short photoperiod exposure stimulates its reproductive activity while long photoperiod inhibits. To explore epigenetic change that could influence reproductive activity, we performed whole genome bisulfite sequencing and transcriptome sequencing in the hypothalamus at three reproductive stages during long-light exposure in male Magang geese. Results A total number of 10,602 differentially methylated regions (DMRs) were identified among three comparison groups. We observed that the vast majority of DMRs were enriched in intron regions. By integrating the BS-sequencing and RNA-seq data, the correlation between methylation changes of CG DMRs and expression changes of their associated genes was significant only for genes containing CG DMRs in their intron. A total of 278 DMR-associated DEGs were obtained among the three stages. KEGG analysis revealed that the DMR-associated DEGs were mainly involved in 11 pathways. Among them, the neuroactive ligand-receptor interaction pathway was significantly enriched in both two comparisons (RA vs.RD and RD vs.RI); the Wnt signaling pathway, apelin signaling pathway, melanogenesis, calcium signaling pathway, focal adhesion, and adherens junction were significantly enriched in the RA vs. RI comparison. In addition, the expression level of two serotonin-metabolic genes was significantly altered during reproductive axis inactivation by the methylation status of their promoter region (TPH2) and intron region (SLC18A2), respectively. These results were confirmed by Bisulfite sequencing PCR (BSP), pyrosequencing, and real-time qPCR, indicating that serotonin metabolic signaling may play a key role in decreasing the reproductive activity of Magang geese induced by long-light exposure. Furthermore, we performed a metabolomics approach to investigate the concentration of neurotransmitters among the three stages, and found that 5-HIAA, the last product of the serotonin metabolic pathway, was significantly decreased in the hypothalamus during RI. Conclusions Our study reveals that the methylation status of the serotonin metabolic pathway in the hypothalamus is associated with reproductive inactivation, and provided new insight into the effect of DNA methylation on the reproductive regulation of the hypothalamus in Magang geese.

Funder

National Natural Science Foundation of China

Key Area Research and Development Program of Guangdong Province

Natural Science Foundation of Guangdong Province

The key discipline research capacity improvement project of Guangdong Province

Science and Technology Planning Project of Guangzhou

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3