Correlation scan: identifying genomic regions that affect genetic correlations applied to fertility traits

Author:

Olasege Babatunde S.,Porto-Neto Laercio R.,Tahir Muhammad S.,Gouveia Gabriela C.,Cánovas Angela,Hayes Ben J.,Fortes Marina R. S.

Abstract

AbstractAlthough the genetic correlations between complex traits have been estimated for more than a century, only recently we have started to map and understand the precise localization of the genomic region(s) that underpin these correlations. Reproductive traits are often genetically correlated. Yet, we don’t fully understand the complexities, synergism, or trade-offs between male and female fertility. In this study, we used reproductive traits in two cattle populations (Brahman; BB, Tropical Composite; TC) to develop a novel framework termed correlation scan (CS). This framework was used to identify local regions associated with the genetic correlations between male and female fertility traits. Animals were genotyped with bovine high-density single nucleotide polymorphisms (SNPs) chip assay. The data used consisted of ~1000 individual records measured through frequent ovarian scanning for age at firstcorpus luteum(AGECL) and a laboratory assay for serum levels of insulin growth hormone (IGF1 measured in bulls, IGF1b, or cows, IGF1c). The methodology developed herein used correlations of 500-SNP effects in a 100-SNPs sliding window in each chromosome to identify local genomic regions that either drive or antagonize the genetic correlations between traits. We used Fisher’s Z-statistics through a permutation method to confirm which regions of the genome harboured significant correlations. About 30% of the total genomic regions were identified as driving and antagonizing genetic correlations between male and female fertility traits in the two populations. These regions confirmed the polygenic nature of the traits being studied and pointed to genes of interest. For BB, the most important chromosome in terms of local regions is often located on bovine chromosome (BTA) 14. However, the important regions are spread across few different BTA’s in TC. Quantitative trait loci (QTLs) and functional enrichment analysis revealed many significant windows co-localized with known QTLs related to milk production and fertility traits, especially puberty. In general, the enriched reproductive QTLs driving the genetic correlations between male and female fertility are the same for both cattle populations, while the antagonizing regions were population specific. Moreover, most of the antagonizing regions were mapped to chromosome X. These results suggest regions of chromosome X for further investigation into the trade-offs between male and female fertility. We compared the CS with two other recently proposed methods that map local genomic correlations. Some genomic regions were significant across methods. Yet, many significant regions identified with the CS were overlooked by other methods.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3