Prediction of Back-splicing sites for CircRNA formation based on convolutional neural networks

Author:

Shen Zhen,Shao Yan Ling,Liu Wei,Zhang Qinhu,Yuan Lin

Abstract

Abstract Background Circular RNAs (CircRNAs) play critical roles in gene expression regulation and disease development. Understanding the regulation mechanism of CircRNAs formation can help reveal the role of CircRNAs in various biological processes mentioned above. Back-splicing is important for CircRNAs formation. Back-splicing sites prediction helps uncover the mysteries of CircRNAs formation. Several methods were proposed for back-splicing sites prediction or circRNA-realted prediction tasks. Model performance was constrained by poor feature learning and using ability. Results In this study, CircCNN was proposed to predict pre-mRNA back-splicing sites. Convolution neural network and batch normalization are the main parts of CircCNN. Experimental results on three datasets show that CircCNN outperforms other baseline models. Moreover, PPM (Position Probability Matrix) features extract by CircCNN were converted as motifs. Further analysis reveals that some of motifs found by CircCNN match known motifs involved in gene expression regulation, the distribution of motif and special short sequence is important for pre-mRNA back-splicing. Conclusions In general, the findings in this study provide a new direction for exploring CircRNA-related gene expression regulatory mechanism and identifying potential targets for complex malignant diseases. The datasets and source code of this study are freely available at: https://github.com/szhh521/CircCNN.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3