Proteomics and transcriptomics profiling reveals distinct aspects of kidney stone related genes in calculi rats

Author:

Zhu Wang,Qiong Deng,Yanli Gu,Min Li,Ying Zhang,Qiyi Hu,Shenping Zhang,Xisheng Wang,Hui Liang

Abstract

Abstract Backgrounds Kidney stone also known as urolithiasis or nephrolithiasis, is one of the oldest diseases known to medicine, however, the gene expression changes and related kidney injury remains unclear. Methods A calculi rat model was developed via ethylene glycol– and ammonium chloride–induction. Integrated proteomic and transcriptomic analysis was performed to characterize the distinct gene expression profiles in the kidney of calculi rat. Differential expressed genes (DEGs) were sub-clustered into distinct groups according to the consistency of transcriptome and proteome. Gene Ontology and KEGG pathway enrichment was performed to analyze the functions of each sub-group of DEGs. Immunohistochemistry was performed to validated the expression of identified proteins. Results Five thousand eight hundred ninety-seven genes were quantified at both transcriptome and proteome levels, and six distinct gene clusters were identified, of which 14 genes were consistently dysregulated. Functional enrichment analysis showed that the calculi rat kidney was increased expression of injured & apoptotic markers and immune-molecules, and decreased expression of solute carriers & transporters and many metabolic related factors. Conclusions The present proteotranscriptomic study provided a data resource and new insights for better understanding of the pathogenesis of nephrolithiasis, will hopefully facilitate the future development of new strategies for the recurrence prevention and treatment in patients with kidney stone disease.

Funder

Shenzhen Fundamental Research Program

Scientific Research Projects of Medical and Health Institutions of Longhua Shenzhen

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3