Abstract
Abstract
Background
Early sex differentiation genes of zebrafish remain an unsolved mystery due to the difficulty to distinguish the sex of juvenile zebrafish. However, aromatase inhibitors (AIs) could direct juvenile zebrafish sex differentiation to male and even induce ovary-to-testis reversal in adult zebrafish.
Results
In order to determine the transcriptomic changes of sex differentiation in juvenile zebrafish and early sex-reversal in adult zebrafish, we sequenced the transcriptomes of juvenile and adult zebrafish treated with AI exemestane (EM) for 32 days, when juvenile zebrafish sex differentiation finished. EM treatment in females up-regulated the expression of genes involved in estrogen metabolic process, female gamete generation and oogenesis, including gsdf, macf1a and paqr5a, while down-regulated the expression of vitellogenin (vtg) genes, including vtg6, vtg2, vtg4, and vtg7 due to the lower level of Estradiol (E2). Furthermore, EM-juveniles showed up-regulation in genes related to cell death and apoptosis, such as bcl2l16 and anax1c, while the control-juveniles exhibited up-regulation of genes involved in positive regulation of reproductive process and oocyte differentiation such as zar1 and zpcx. Moreover, EM-females showed higher enrichment than control females in genes involved in VEGF signaling pathway, glycosaminoglycan degradation, hedgehog signaling pathway, GnRH signaling pathway and steroid hormone biosynthesis.
Conclusions
Our study shows anti-masculinization in EM-treated adult females but not in EM-treated juveniles. This may be responsible for the lower sex plasticity in adults than juveniles.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for Central Universities of the Central South University
Huazhong Agricultural University Scientific & Technological Self-innovation Foundation
Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献