Identification and analysis of differentially expressed microRNAs in endometrium to explore the regulation of sheep fecundity

Author:

Dong Jihong,Jiang Xuecheng,Liu Nan,Li Hegang,Zhao Jinshan,He Jianning,Gao Xiaoxiao

Abstract

Abstract Background MicroRNAs (miRNAs) play an important regulatory role in mammalian reproduction. Currently, most studies are primarily concentrated on ovarian miRNAs, ignoring the influence of endometrial miRNAs on the fecundity of female sheep. To uncover potential regulators of sheep fecundity, RNA-seq was used to comparatively analyze miRNA expression profiles of endometrium between high prolificacy sheep (HP, litter size = 3) and low prolificacy sheep (LP, litter size = 1) with FecB genotype. Results Firstly, genomic features of miRNAs from endometrium were analyzed. Furthermore, 58 differentially expressed (DE) miRNAs were found in the endometrium of Hu sheep with different litter size. A co-expression network of DE miRNAs and target genes has been constructed, and hub genes related litter size are included, such as DE miRNA unconservative_NC_019472.2_1229533 and unconservative_NC_019481.2_1637827 target to estrogen receptor α (ESR1) and unconservative_NC_019481.2_1637827 targets to transcription factor 7 (TCF7). Moreover, functional annotation analysis showed that the target genes (NRCAM and NEGR1) of the DE miRNAs were significantly enriched in cell adhesion molecules (CAMs) signaling pathway, which was related to uterine receptivity. Conclusion Taken together, this study provides a new valuable resource for understanding the molecular mechanisms underlying Hu sheep prolificacy.

Funder

Natural Science Foundation of Shandong Province

Earmarked Fund for Modern China Wool & Cashmere Technology Research System

Technology System of Modern Agricultural Industry in Shandong Province

Shandong Province Nataral Science Foundation

Qingdao Agricultural University Doctoral Start-Up Fund

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3