Methylome and transcriptome profiles in three yak tissues revealed that DNA methylation and the transcription factor ZGPAT co-regulate milk production

Author:

Xin Jinwei,Chai Zhixin,Zhang Chengfu,Zhang Qiang,Zhu Yong,Cao Hanwen,Yangji Cidan,Chen Xiaoying,Jiang Hui,Zhong Jincheng,Ji Qiumei

Abstract

Abstract Background Domestic yaks play an indispensable role in sustaining the livelihood of Tibetans and other ethnic groups on the Qinghai-Tibetan Plateau (QTP), by providing milk and meat. They have evolved numerous physiological adaptations to high-altitude environment, including strong blood oxygen transportation capabilities and high metabolism. The roles of DNA methylation and gene expression in milk production and high-altitudes adaptation need further exploration. Results We performed genome-wide DNA methylome and transcriptome analyses of breast, lung, and biceps brachii muscle tissues from yaks of different ages. We identified 432,350 differentially methylated regions (DMRs) across the age groups within each tissue. The post-mature breast tissue had considerably more differentially methylated regions (155,957) than that from the three younger age groups. Hypomethylated genes with high expression levels might regulate milk production by influencing protein processing in the endoplasmic reticulum. According to weighted gene correlation network analysis, the “hub” gene ZGPAT was highly expressed in the post-mature breast tissue, indicating that it potentially regulates the transcription of 280 genes that influence protein synthesis, processing, and secretion. The tissue network analysis indicated that high expression of HIF1A regulates energy metabolism in the lung. Conclusions This study provides a basis for understanding the epigenetic mechanisms underlying milk production in yaks, and the results offer insight to breeding programs aimed at improving milk production.

Funder

Program of Provincial Department of Finance of the Tibet Autonomous Region

Program National Beef Cattle and Yak Industrial Technology System

Basic Research Programs of Sichuan Province

Open Project Program of State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3