Landscape of internal N7-methylguanosine of long non-coding RNA modifications in resistant acute myeloid leukemia

Author:

Han Jingyi,Liu Qinqin,Zhou Yao,Li Dong,Wang Ran

Abstract

Abstract Background Growing evidence indicates that RNA methylation plays a fundamental role in epigenetic regulation, which is associated with the tumorigenesis and drug resistance. Among them, acute myeloid leukemia (AML), as the top acute leukemia for adults, is a deadly disease threatening human health. Although N7-methylguanosine (m7G) has been identified as an important regulatory modification, its distribution has still remained elusive. Methods The present study aimed to explore the long non-coding RNA (lncRNA) functional profile of m7G in AML and drug-resistant AML cells. The transcriptome-wide m7G methylation of lncRNA was analyzed in AML and drug-resistant AML cells. RNA MeRIP-seq was performed to identify m7G peaks on lncRNA and differences in m7G distribution between AML and drug-resistant AML cells. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to predict the possible roles and m7G-associated pathway. Results Using m7G peak sequencing, it was found that a sequence motif was necessary for m7G methylation in drug-resistant AML lncRNA. Unsupervised hierarchical cluster analysis confirmed that lncRNA m7G methylation occurred more frequently in drug-resistant AML cells than in AML cells. RNA sequencing demonstrated that more genes were upregulated by methylation in drug-resistant AML cells, while methylation downregulated more genes in AML cells. The GO and KEGG pathway enrichment analyses revealed that genes having a significant correlation with m7G sites in lncRNA were involved in drug-resistant AML signaling pathways. Conclusion Significant differences in the levels and patterns of m7G methylation between drug-resistant AML cells and AML cells were revealed. Furthermore, the cellular functions potentially influenced by m7G in drug-resistant AML cells were predicted, providing evidence implicating m7G-mediated lncRNA epigenetic regulation in the progression of drug resistance in AML. These findings highlight the involvement of m7G in the development of drug resistance in AML.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3