Differential responses in placenta and fetal thymus at 12 days post infection elucidate mechanisms of viral level and fetal compromise following PRRSV2 infection

Author:

Van Goor Angelica,Pasternak Alex,Walker Kristen,Hong Linjun,Malgarin Carolina,MacPhee Daniel J.,Harding John C. S.,Lunney Joan K.ORCID

Abstract

Abstract Background A pregnant gilt infected with porcine reproductive and respiratory syndrome virus (PRRSV) can transmit the virus to her fetuses across the maternal-fetal-interface resulting in varying disease outcomes. However, the mechanisms leading to variation in fetal outcome in response to PRRSV infection are not fully understood. Our objective was to assess targeted immune-related gene expression patterns and pathways in the placenta and fetal thymus to elucidate the molecular mechanisms involved in the resistance/tolerance and susceptibility of fetuses to PRRSV2 infection. Fetuses were grouped by preservation status and PRRS viral load (VL): mock infected control (CTRL), no virus detected (UNINF), virus detected in the placenta only with viable (PLCO-VIA) or meconium-stained fetus (PLCO-MEC), low VL with viable (LVL-VIA) or meconium-stained fetus (LVL-MEC), and high VL with viable (HVL-VIA) or meconium-stained fetus (HVL-MEC). Results The host immune response was initiated only in fetuses with detectable levels of PRRSV. No differentially expressed genes (DEG) in either the placenta or thymus were identified in UNINF, PLCO-VIA, and PLCO-MEC when compared to CTRL fetuses. Upon fetal infection, a set of core responsive IFN-inducible genes (CXCL10, IFIH1, IFIT1, IFIT3, ISG15, and MX1) were strongly upregulated in both tissues. Gene expression in the thymus is a better differentiator of fetal VL; the strong downregulation of several innate and adaptive immune pathways (e.g., B Cell Development) are indicative of HVL. Gene expression in the placenta may be a better differentiator of fetal demise than the thymus, based-on principle component analysis clustering, gene expression patterns, and dysregulation of the Apoptosis and Ubiquitination pathways. Conclusion Our data supports the concept that fetal outcome in response to PRRSV2 infection is determined by fetal, and more significantly placental response, which is initiated only after fetal infection. This conceptual model represents a significant step forward in understanding the mechanisms underpinning fetal susceptibility to the virus.

Funder

Agricultural Research Service

Genome Canada

Genome Prairie

Genome Alberta

PigGen Canada

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference53 articles.

1. Lunney JK, Fang Y, Ladinig A, Chen N, Li Y, Rowland B, et al. Porcine reproductive and respiratory syndrome virus (PRRSV): pathogenesis and interaction with the immune system. Annu Rev Anim Biosci. 2016;4:129–54.

2. Holtkamp DJ, Kliebenstein JB, Neumann E, Zimmerman JJ, Rotto H, Yoder TK, et al. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J Swine Health Prod. 2013;21(2):72.

3. Kranker S, Nielsen J, Bille-Hansen V, Bøtner A. Experimental inoculation of swine at various stages of gestation with a Danish isolate of porcine reproductive and respiratory syndrome virus (PRRSV). Vet Microbiol. 1998;61(1–2):21–31.

4. Cheon D-S, Chae C. Distribution of porcine reproductive and respiratory syndrome virus in stillborn and liveborn piglets from experimentally infected sows. J Comp Pathol. 2001;124(4):231–7.

5. Mengeling WL, Lager K, Vorwald A. Temporal characterization of transplacental infection of porcine fetuses with porcine reproductive and respiratory syndrome virus. Am J Vet Res. 1994;55(10):1391–8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3