Comparison of chloroplast genomes of Gynura species: sequence variation, genome rearrangement and divergence studies

Author:

Han Tianyu,Li Mimi,Li Jiawei,Lv Han,Ren Bingru,Chen Jian,Li Weilin

Abstract

Abstract Background Some Gynura species have been reported to be natural anti-diabetic plants. Improvement of their traits towards application relies on hybridization. Clearly, phylogenetic relationships could optimize compatible hybridizations. For flowerings plants, chloroplast genomes have been used to solve many phylogenetic relationships. To date, the chloroplast genome sequences of 4 genera of the tribe Senecioneae have been uploaded to GenBank. The internal relationships within the genus Gynura and the relationship of the genus Gynura with other genera in the tribe Senecioneae need further research. Results The chloroplast genomes of 4 Gynura species were sequenced, assembled and annotated. In comparison with those of 12 other Senecioneae species, the Gynura chloroplast genome features were analysed in detail. Subsequently, differences in the microsatellite and repeat types in the tribe were found. From the comparison, it was found that IR expansion and contraction are conserved in the genera Gynura, Dendrosenecio and Ligularia. Compared to other regions on the chloroplast genome, the region from 25,000 to 50,000 bp was not conserved. Seven ndh genes in this region are under purifying selection, with small changes in amino acids. The whole chloroplast genome sequences of 16 Senecioneae species were used to build a phylogenetic tree. Based on the oldest Artemisia pollen fossil, the divergence time was estimated. Conclusions Sequencing the chloroplast genomes of 4 Gynura species helps us to solve many problems. The phylogenetic relationships and divergence time among 4 Gynura and 16 Senecioneae species were evaluated by comparing their chloroplast genomes. The phylogenetic relationship of the genera Gynura and Ligularia was different from that observed previous work. In a previous phylogenetic tree, the genus Ligularia belonged to the Tussilagininae subtribe, which was in a lineage that diverged earlier than other genera. Further morphology and genome-wide analyses are needed to clarify the genus relationships.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3