Author:
Yi Jeong Sang,Kim Jung Min,Kang Min-Kyoung,Kim Jong Hoon,Cho Hang Su,Ban Yeon Hee,Song Myoung Chong,Son Kwang-Hee,Yoon Yeo Joon
Abstract
Abstract
Background
Nematodes are parasitic animals that cause over 100 billion US dollars loss in agricultural business. The whole-genomes of two Streptomyces strains, Streptomyces spectabilis KCTC9218T and Streptomyces sp. AN091965, were sequenced. Both strains produce spectinabilin, an antinematode drug. Its secondary metabolism was examined to aid the development of an efficient nematicidal drug-producing host strain.
Results
The whole-genome sequences of S. spectabilis KCTC9218T and Streptomyces sp. AN091965 were analyzed using PacBio and Illumina sequencing platforms, and assembled using hybrid methodology. The total contig lengths for KCTC9218T and AN091965 were 9.97 Mb and 9.84 Mb, respectively. A total of 8,374 and 8,054 protein-coding genes, as well as 39 and 45 secondary metabolite biosynthetic gene clusters were identified in KCTC9218T and AN091965, respectively. 18.4 ± 6.45 mg/L and 213.89 ± 21.30 mg/L of spectinabilin were produced by S. spectabilis KCTC9218T and Streptomyces sp. AN091965, respectively. Pine wilt disease caused by nematode was successfully prevented by lower concentration of spectinabilin injection than that of abamectin recommended by its manufacturer. Production of multiple antinematode drugs, including spectinabilin, streptorubin B, and undecylprodigiosin was observed in both strains using high-resolution liquid chromatography mass spectrometry (LC–MS) analysis.
Conclusions
Whole-genome sequencing of spectinabilin-producing strains, coupled with bioinformatics and mass spectrometry analyses, revealed the production of multiple nematicidal drugs in the KCTC9218T and AN091965 strains. Especially, Streptomyces sp. AN091965 showed high production level of spectinabilin, and this study provides crucial information for the development of potential nematicidal drug producers.
Funder
Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献