Network analysis exposes core functions in major lifestyles of fungal and oomycete plant pathogens

Author:

Pandaranayaka Eswari PJ,Frenkel Omer,Elad Yigal,Prusky Dov,Harel Arye

Abstract

Abstract Background Genomic studies demonstrate that components of virulence mechanisms in filamentous eukaryotic pathogens (FEPs, fungi and oomycetes) of plants are often highly conserved, or found in gene families that include secreted hydrolytic enzymes (e.g., cellulases and proteases) and secondary metabolites (e.g., toxins), central to the pathogenicity process. However, very few large-scale genomic comparisons have utilized complete proteomes from dozens of FEPs to reveal lifestyle-associated virulence mechanisms. Providing a powerful means for exploration, and the discovery of trends in large-scale datasets, network analysis has been used to identify core functions of the primordial cyanobacteria, and ancient evolutionary signatures in oxidoreductases. Results We used a sequence-similarity network to study components of virulence mechanisms of major pathogenic lifestyles (necrotroph (ic), N; biotroph (ic), B; hemibiotroph (ic), H) in complete pan-proteomes of 65 FEPs and 17 saprobes. Our comparative analysis highlights approximately 190 core functions found in 70% of the genomes of these pathogenic lifestyles. Core functions were found mainly in: transport (in H, N, B cores); carbohydrate metabolism, secondary metabolite synthesis, and protease (H and N cores); nucleic acid metabolism and signal transduction (B core); and amino acid metabolism (H core). Taken together, the necrotrophic core contains functions such as cell wall-associated degrading enzymes, toxin metabolism, and transport, which are likely to support their lifestyle of killing prior to feeding. The biotrophic stealth growth on living tissues is potentially controlled by a core of regulatory functions, such as: small G-protein family of GTPases, RNA modification, and cryptochrome-based light sensing. Regulatory mechanisms found in the hemibiotrophic core contain light- and CO2-sensing functions that could mediate important roles of this group, such as transition between lifestyles. Conclusions The selected set of enriched core functions identified in our work can facilitate future studies aimed at controlling FEPs. One interesting example would be to facilitate the identification of the pathogenic potential of samples analyzed by metagenomics. Finally, our analysis offers potential evolutionary scenarios, suggesting that an early-branching saprobe (identified in previous studies) has probably evolved a necrotrophic lifestyle as illustrated by the highest number of shared gene families between saprobes and necrotrophs.

Funder

Israeli Chief Scientist, Ministry of Agriculture, IL

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3