RNA sequencing identifies key genes involved in intramuscular fat deposition in chickens at different developmental stages

Author:

Zhu Jinmei,Wang Yongli,Su Yongchun,Zheng Maiqing,Cui Huanxian,Chen Zhiwu

Abstract

Abstract Background Intramuscular fat (IMF) is an important factor in meat quality, and triglyceride (TG) and Phospholipids (PLIP), as the main components of IMF, are of great significance to the improvement of meat quality. Results In this study, we used 30 RNA sequences generated from the transcriptome of chicken breast muscle tissues at different developmental stages to construct a gene expression matrix to map RNA sequence reads to the chicken genome and identify the transcript of origin. We used weighted gene co-expression network analysis (WGCNA) and identified 27 co-expression modules, 10 of which were related to TG and PLIP. We identified 150 highly-connected hub genes related to TG and PLIP, respectively, which were found to be mainly enriched in the adipocytokine signaling pathway, MAPK signaling pathway, mTOR signaling pathway, FoxO signaling pathway, and TGF-beta signaling pathway. Additionally, using the BioMart database, we identified 134 and 145 candidate genes related to fat development in the TG-related module and PLIP-related module, respectively. Among them, RPS6KB1, BRCA1, CDK1, RPS3, PPARGC1A, ACSL1, NDUFAB1, NDUFA9, ATP5B and PRKAG2 were identified as candidate genes related to fat development and highly-connected hub genes in the module, suggesting that these ten genes may be important candidate genes affecting IMF deposition. Conclusions RPS6KB1, BRCA1, CDK1, RPS3, PPARGC1A, ACSL1, NDUFAB1, NDUFA9, ATP5B and PRKAG2 may be important candidate genes affecting IMF deposition. The purpose of this study was to identify the co-expressed gene modules related to chicken IMF deposition using WGCNA and determine key genes related to IMF deposition, so as to lay a foundation for further research on the molecular regulation mechanism underlying chicken fat deposition.

Funder

The research was supported by Nanning Major Science and Technology Project in 2022

Modern Agricultural Industrial Technology System Guangxi Broiler Innovation Team Construction Special Fund

China National Broiler Industry Technology System Construction Special Fund

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3