Author:
Bhattacharya Anupam,Das Sushmita,Bhattacharjee Maloyjo Joyraj,Mukherjee Ashis K.,Khan Mojibur Rohman
Abstract
AbstractThe vaginal microenvironment of healthy women has a predominance of Lactobacillus crispatus, L. iners, L. gasseri, and L. jensenii. The genomic repertoire of the strains of each of the species associated with the key attributes thereby regulating a healthy vaginal environment needs a substantial understanding.We studied all available human strains of the four lactobacilli across different countries, isolated from vaginal and urinal sources through phylogenetic and pangenomic approaches. The findings showed that L. iners has the highest retention of core genes, and L. crispatus has more gene gain in the evolutionary stratum. Interestingly, L. gasseri and L. jensenii demonstrated major population-specific gene-cluster gain/loss associated with bacteriocin synthesis, iron chelating, adherence, zinc and ATP binding proteins, and hydrolase activity. Gene ontology enrichment analysis revealed that L. crispatus strains showed greater enrichment of functions related to plasma membrane integrity, biosurfactant, hydrogen peroxide synthesis, and iron sequestration as an ancestral derived core function, while bacteriocin and organic acid biosynthesis are strain-specific accessory enriched functions. L. jensenii showed greater enrichment of functions related to adherence, aggregation, and exopolysaccharide synthesis. Notably, the key functionalities are heterogeneously enriched in some specific strains of L. iners and L. gasseri.This study shed light on the genomic features and their variability that provides advantageous attributes to predominant vaginal Lactobacillus species maintaining vaginal homeostasis. These findings evoke the need to consider region-specific candidate strains of Lactobacillus to formulate prophylactic measures against vaginal dysbiosis for women’s health.
Publisher
Springer Science and Business Media LLC
Reference58 articles.
1. Das S, Bhattacharjee MJ, Mukherjee AK, Khan MR. Recent advances in understanding of multifaceted changes in the vaginal microenvironment: implications in vaginal health and therapeutics. Crit Rev Microbiol 2022:1–27.
2. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4680–7.
3. Chaban B, Links MG, Jayaprakash TP, Wagner EC, Bourque DK, Lohn Z, Albert AYK, van Schalkwyk J, Reid G, Hemmingsen SM, et al. Characterization of the vaginal microbiota of healthy canadian women through the menstrual cycle. Microbiome. 2014;2(1):23.
4. Chen X, Lu Y, Chen T, Li R. The female vaginal microbiome in Health and bacterial vaginosis. Front Cell Infect Microbiol. 2021;11:631972.
5. Amabebe E, Anumba DOC. The Vaginal Microenvironment: the physiologic role of Lactobacilli. Front Med (Lausanne). 2018;5:181.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献