Mitochondrial point heteroplasmy: insights from deep-sequencing of human replicate samples

Author:

Korolija MarinaORCID,Sukser Viktorija,Vlahoviček KristianORCID

Abstract

Abstract Background Human mitochondrial heteroplasmy is an extensively investigated phenomenon in the context of medical diagnostics, forensic identification and molecular evolution. However, technical limitations of high-throughput sequencing hinder reliable determination of point heteroplasmies (PHPs) with minor allele frequencies (MAFs) within the noise threshold. Results To investigate the PHP landscape at an MAF threshold down to 0.1%, we sequenced whole mitochondrial genomes at approximately 7.700x coverage, in multiple technical and biological replicates of longitudinal blood and buccal swab samples from 11 human donors (159 libraries in total). The results obtained by two independent sequencing platforms and bioinformatics pipelines indicate distinctive PHP patterns below and above the 1% MAF cut-off. We found a high inter-individual prevalence of low-level PHPs (MAF < 1%) at polymorphic positions of the mitochondrial DNA control region (CR), their tissue preference, and a tissue-specific minor allele linkage. We also established the position-dependent potential of minor allele expansion in PHPs, and short-term PHP instability in a mitotically active tissue. We demonstrate that the increase in sensitivity of PHP detection to minor allele frequencies below 1% within a robust experimental and analytical pipeline, provides new information with potential applicative value. Conclusions Our findings reliably show different mutational loads between tissues at sub-1% allele frequencies, which may serve as an informative medical biomarker of time-dependent, tissue-specific mutational burden, or help discriminate forensically relevant tissues in a single person, close maternal relatives or unrelated individuals of similar phylogenetic background.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3