Analysis of two mechanisms of telomere maintenance based on the theory of g-Networks and stochastic automata networks

Author:

Lee Kyung Hyun,Kimmel Marek

Abstract

Abstract * Background Telomeres, which are composed of repetitive nucleotide sequences at the end of chromosomes, behave as a division clock that measures replicative senescence. Under the normal physiological condition, telomeres shorten with each cell division, and cells use the telomere lengths to sense the number of divisions. Replicative senescence has been shown to occur at approximately 50–70 cell divisions, which is termed the Hayflick’s limit. However, in cancer cells telomere lengths are stabilized, thereby allowing continual cell replication by two known mechanisms: activation of telomerase and Alternative Lengthening of Telomeres (ALT). The connections between the two mechanisms are complicated and still poorly understood. * Results In this research, we propose that two different approaches, G-Networks and Stochastic Automata Networks, which are stochastic models motivated by queueing theory, are useful to identify a set of genes that play an important role in the state of interest and to infer their previously unknown correlation by obtaining both stationary and joint transient distributions of the given system. Our analysis using G-Network detects five statistically significant genes (CEBPA, FOXM1, E2F1, c-MYC, hTERT) with either mechanism, contrasted to normal cells. A new algorithm is introduced to show how the correlation between two genes of interest varies in the transient state according not only to each mechanism but also to each cell condition. * Conclusions This study expands our existing knowledge of genes associated with mechanisms of telomere maintenance and provides a platform to understand similarities and differences between telomerase and ALT in terms of the correlation between two genes in the system. This is particularly important because telomere dynamics plays a major role in many physiological and disease processes, including hematopoiesis.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference38 articles.

1. Plateau B. On the stochastic structure of parallelism and synchronization models for distributed algorithms. In: ACM SIGMETRICS Performance Evaluation Review, vol 13. New York: ACM: 1985. p. 147–54.

2. Fourneau JM, Plateau B, Stewart W. Product form for stochastic automata networks. In: Proceedings of the 2nd international conference on Performance evaluation methodologies and tools. Citeseer: 2007. p. 32.

3. Fernandes P, Plateau B, Stewart WJ. Optimizing tensor product computations in stochastic automata networks. RAIRO-Oper Res. 1998; 32(3):325–51.

4. Alexander G. Kronecker products and matrix calculus with applications. New York: Halsted; 1981.

5. Plateau B, Stewart WJ. Stochastic automata networks: Springer; 2000, p. 24.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3