Using single-worm RNA sequencing to study C. elegans responses to pathogen infection

Author:

Wang Archer J.,Wibisono Phillip,Geppert Blake M.,Liu Yiyong

Abstract

Abstract Background Caenorhabditis elegans is an excellent research model whose populations have been used in many studies to address various biological questions. Although worm-to-worm phenotypic variations in isogenic populations have been persistently observed, they are not well understood and are often ignored or averaged out in studies, masking the impacts of such variations on data collection and interpretation. Single-worm RNA sequencing that profiles the transcriptomes of individual animals has the power to examine differences between individuals in a worm population, but this approach has been understudied. The integrity of the starting RNA, the quality of the library and sequence data, as well as the transcriptome-profiling effectiveness of single-worm RNA-seq remain unclear. Therefore, more studies are needed to improve this technique and its application in research. Results In this study, we aimed to develop a single-worm RNA-seq method that includes five steps: worm lysis and RNA extraction, cDNA synthesis, library preparation, sequencing, and sequence data analysis. We found that the mechanical lysis of worms using a Qiagen TissueLyser maintained RNA integrity and determined that the quality of our single-worm libraries was comparable to that of standard RNA-seq libraries based on assessments of a variety of parameters. Furthermore, analysis of pathogen infection-induced gene expression using single-worm RNA-seq identified a core set of genes and biological processes relating to the immune response and metabolism affected by infection. These results demonstrate the effectiveness of our single-worm RNA-seq method in transcriptome profiling and its usefulness in addressing biological questions. Conclusions We have developed a single-worm RNA-seq method to effectively profile gene expression in individual C. elegans and have applied this method to study C. elegans responses to pathogen infection. Key aspects of our single-worm RNA-seq libraries were comparable to those of standard RNA-seq libraries. The single-worm method captured the core set of, but not all, infection-affected genes and biological processes revealed by the standard method, indicating that there was gene regulation that is not shared by all individuals in a population. Our study suggests that combining single-worm and standard RNA-seq approaches will allow for detecting and distinguishing shared and individual-specific gene activities in isogenic populations.

Funder

Genomics Core, WSU-Spokane.

Department of Translational Medicine & Physiology, Elson S. Floyd College of Medicine, WSU-Spokane

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3