Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings

Author:

Vessal Saeedreza,Arefian Mohammad,Siddique Kadambot H. M.

Abstract

Abstract Background Chickpea is an important food legume crop with high protein levels that is widely grown in rainfed areas prone to drought stress. Using an integrated approach, we describe the relative changes in some physiological parameters and the proteome of a drought-tolerant (MCC537, T) and drought-sensitive (MCC806, S) chickpea genotype. Results Under progressive dehydration stress, the T genotype relied on a higher relative leaf water content after 3 and 5 d (69.7 and 49.3%) than the S genotype (59.7 and 40.3%) to maintain photosynthetic activities and improve endurance under stress. This may have been facilitated by greater proline accumulation in the T genotype than the S genotype (14.3 and 11.1 μmol g− 1 FW at 5 d, respectively). Moreover, the T genotype had less electrolyte leakage and lower malondialdehyde contents than the S genotype under dehydration stress, indicating greater membrane stability and thus greater dehydration tolerance. The proteomic analysis further confirmed that, in response to dehydration, the T genotype activated more proteins related to photosynthesis, stress response, protein synthesis and degradation, and gene transcription and signaling than the S genotype. Of the time-point dependent proteins, the largest difference in protein abundance occurred at 5 d, with 29 spots increasing in the T genotype and 30 spots decreasing in the S genotype. Some of the identified proteins—including RuBisCo, ATP synthase, carbonic anhydrase, psbP domain-containing protein, L-ascorbate peroxidase, 6-phosphogluconate dehydrogenase, elongation factor Tu, zinc metalloprotease FTSH 2, ribonucleoproteins and auxin-binding protein—may play a functional role in drought tolerance in chickpea. Conclusions This study highlights the significance of genotype- and time-specific proteins associated with dehydration stress and identifies potential resources for molecular drought tolerance improvement in chickpea.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3