Author:
Nouioui Imen,Ha Sung-min,Baek Inwoo,Chun Jongsik,Goodfellow Michael
Abstract
Abstract
Background
Recent studies highlighted the biosynthetic potential of nocardiae to produce diverse novel natural products comparable to that of Streptomyces, thereby making them an attractive source of new drug leads. Many of the 119 Nocardia validly named species were isolated from natural habitats but little is known about the diversity and the potential of the endophytic nocardiae of root nodule of actinorhizal plants.
Results
The taxonomic status of an actinobacterium strain, designated ncl2T, was established in a genome-based polyphasic study. The strain was Gram-stain-positive, produced substrate and aerial hyphae that fragmented into coccoid and rod-like elements and showed chemotaxonomic properties that were also typical of the genus Nocardia. It formed a distinct branch in the Nocardia 16S rRNA gene tree and was most closely related to the type strains of Nocardia nova (98.6%), Nocardia jiangxiensis (98.4%), Nocardia miyuensis (97.8%) and Nocardia vaccinii (97.7%). A comparison of the draft genome sequence generated for the isolate with the whole genome sequences of its closest phylogenetic neighbours showed that it was most closely related to the N. jiangxiensis, N. miyuensis and N. vaccinii strains, a result underpinned by average nucleotide identity and digital DNA-DNA hybridization data. Corresponding taxogenomic data, including those from a pan-genome sequence analysis showed that strain ncl2T was most closely related to N. vaccinii DSM 43285T. A combination of genomic, genotypic and phenotypic data distinguished these strains from one another. Consequently, it is proposed that strain ncl2T (= DSM 110931T = CECT 30122T) represents a new species within the genus Nocardia, namely Nocardia alni sp. nov. The genomes of the N. alni and N. vaccinii strains contained 36 and 29 natural product-biosynthetic gene clusters, respectively, many of which were predicted to encode for a broad range of novel specialised products, notably antibiotics. Genome mining of the N. alni strain and the type strains of its closest phylogenetic neighbours revealed the presence of genes associated with direct and indirect mechanisms that promote plant growth. The core genomes of these strains mainly consisted of genes involved in amino acid transport and metabolism, energy production and conversion and transcription.
Conclusions
Our genome-based taxonomic study showed that isolate ncl2T formed a new centre of evolutionary variation within the genus Nocardia. This novel endophytic strain contained natural product biosynthetic gene clusters predicted to synthesize novel specialised products, notably antibiotics and genes associated with the expression of plant growth promoting compounds.
Funder
Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
Publisher
Springer Science and Business Media LLC
Reference116 articles.
1. Trevisan VI. Generi e le Specie delle Batteriacee. Milano: Zanaboni and Gabuzzi; 1889.
2. Castellani A, Chalmers AJ. Manual of tropical medicine. 3 edn. New York USA: William Wood and Co; 1919.
3. Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol. 2009;59:589–608.
4. Lechevalier MP. The taxonomy of the genus Nocardia: some light at the end of the tunnel. In: Goodfellow M, Brownell GH, Serrano JA, editors. The
biology of the Nocardiae. London: Academic; 1976. p. l–38.
5. Goodfellow M, Maldonado LA. Genus I. Nocardia
Trevisan 1889AL. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo M-E, Suzuki K-I, Ludwig W, Whitman WB, editors. Bergey’s
manual of systematic bacteriology, the Actinobacteria,
2nd ed. parts A and B. New York: Springer; 2012. p. 376–419.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献