Bioinformatic analysis and functional predictions of selected regeneration-associated transcripts expressed by zebrafish microglia

Author:

Issaka Salia Ousseini,Mitchell Diana M.ORCID

Abstract

Abstract Background Unlike mammals, zebrafish have a remarkable capacity to regenerate a variety of tissues, including central nervous system tissue. The function of macrophages in tissue regeneration is of great interest, as macrophages respond and participate in the landscape of events that occur following tissue injury in all vertebrate species examined. Understanding macrophage populations in regenerating tissue (such as in zebrafish) may inform strategies that aim to regenerate tissue in humans. We recently published an RNA-seq experiment that identified genes enriched in microglia/macrophages in regenerating zebrafish retinas. Interestingly, a small number of transcripts differentially expressed by retinal microglia/macrophages during retinal regeneration did not have predicted orthologs in human or mouse. We reasoned that at least some of these genes could be functionally important for tissue regeneration, but most of these genes have not been studied experimentally and their functions are largely unknown. To reveal their possible functions, we performed a variety of bioinformatic analyses aimed at identifying the presence of functional protein domains as well as orthologous relationships to other species. Results Our analyses identified putative functional domains in predicted proteins for a number of selected genes. For example, we confidently predict kinase function for one gene, cytokine/chemokine function for another, and carbohydrate enzymatic function for a third. Predicted orthologs were identified for some, but not all, genes in species with described regenerative capacity, and functional domains were consistent with identified orthologs. Comparison to other published gene expression datasets suggest that at least some of these genes could be important in regenerative responses in zebrafish and not necessarily in response to microbial infection. Conclusions This work reveals previously undescribed putative function of several genes implicated in regulating tissue regeneration. This will inform future work to experimentally determine the function of these genes in vivo, and how these genes may be involved in microglia/macrophage roles in tissue regeneration.

Funder

National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3