Identification of common stria vascularis cellular alteration in sensorineural hearing loss based on ScRNA-seq

Author:

Gu Xi,Jiang Kanglun,Chen Ruru,Chen Zhifeng,Wu Xianmin,Xiang Haijie,Huang Xinsheng,Nan Benyu

Abstract

Abstract Background The stria vascularis (SV), located in the lateral wall of the cochlea, maintains cochlear fluid homeostasis and mechanoelectrical transduction (MET) activity required for sound wave conduction. The pathogenesis of a number of human inheritable deafness syndromes, age related hearing loss, drug-induced ototoxicity and noise-induced hearing loss results from the morphological changes and functional impairments in the development of the SV. In this study, we investigate the implications of intercellular communication within the SV in the pathogenesis of sensorineural hearing loss (SNHL). We aim to identify commonly regulated signaling pathways using publicly available single-cell transcriptomic sequencing (scRNA-seq) datasets. Methods We analyzed scRNA-seq data, which was derived from studying the cochlear SV in mice with SNHL compared to normal adult mice. After quality control and filtering, we obtained the major cellular components of the mouse cochlear SV and integrated the data. Using Seurat's FindAllMarkers and FindMarkers packages, we searched for novel conservative genes and differential genes. We employed KEGG and GSEA to identify molecular pathways that are commonly altered among different types of SNHL. We utilized pySCENIC to discover new specific regulatory factors in SV subpopulation cells. With the help of CellChat, we identified changes in subpopulation cells showing similar trends across different SNHL types and their alterations in intercellular communication pathways. Results Through the analysis of the integrated data, we discovered new conserved genes to SV specific cells and identified common downregulated pathways in three types of SNHL. The enriched genes for these pathways showing similar trends are primarily associated with the Electron Transport Chain, related to mitochondrial energy metabolism. Using the CellChat package, we further found that there are shared pathways in the incoming signaling of specific intermediate cells in SNHL, and these pathways have common upstream regulatory transcription factor of Nfe2l2. Combining the results from pySCENIC and CellChat, we predicted the transcription factor Nfe2l2 as an upstream regulatory factor for multiple shared cellular pathways in IC. Additionally, it serves as an upstream factor for several genes within the Electron Transport Chain. Conclusion Our bioinformatics analysis has revealed that downregulation of the mitochondrial electron transport chain have been observed in various conditions of SNHL. E2f1, Esrrb, Runx1, Yy1, and Gata2 could serve as novel important common TFs regulating the electron transport chain. Adm has emerged as a potential new marker gene for intermediate cells, while Itgb5 and Tesc show promise as potential new marker genes for marginal cells in the SV. These findings offer a new perspective on SV lesions in SNHL and provide additional theoretical evidence for the same drug treatment and prevention of different pathologies of SNHL.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Young and Middle-aged Key Personnel Training Project of Fujian Provincial Health Commission

Medical Science and Technology Project of Zhejiang Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3