Gene expression profiling identifies pathways involved in seed maturation of Jatropha curcas

Author:

Maghuly Fatemeh,Deák Tamás,Vierlinger Klemens,Pabinger Stephan,Tafer Hakim,Laimer Margit

Abstract

Abstract Background Jatropha curcas, a tropical shrub, is a promising biofuel crop, which produces seeds with high content of oil and protein. To better understand the maturation process of J. curcas seeds and to improve its agronomic performance, a two-step approach was performed in six different maturation stages of seeds: 1) generation of the entire transcriptome of J. curcas seeds using 454-Roche sequencing of a cDNA library, 2) comparison of transcriptional expression levels using a custom Agilent 8x60K oligonucleotide microarray. Results A total of 793,875 high-quality reads were assembled into 19,382 unique full-length contigs, of which 13,507 could be annotated with Gene Ontology (GO) terms. Microarray data analysis identified 9111 probes (out of 57,842 probes), which were differentially expressed between the six maturation stages. The expression results were validated for 75 selected transcripts based on expression levels, predicted function, pathway, and length. Result from cluster analyses showed that transcripts associated with fatty acid, flavonoid, and phenylpropanoid biosynthesis were over-represented in the early stages, while those of lipid storage were over-represented in the late stages. Expression analyses of different maturation stages of J. curcas seed showed that most changes in transcript abundance occurred between the two last stages, suggesting that the timing of metabolic pathways during seed maturation in J. curcas occurs in late stages. The co-expression results showed that the hubs (CB5-D, CDR1, TT8, DFR, HVA22) with the highest number of edges, associated with fatty acid and flavonoid biosynthesis, are showing a decrease in their expression during seed maturation. Furthermore, seed development and hormone pathways are significantly well connected. Conclusion The obtained results revealed differentially expressed sequences (DESs) regulating important pathways related to seed maturation, which could contribute to the understanding of the complex regulatory network during seed maturation with the focus on lipid, flavonoid and phenylpropanoid biosynthesis. This study provides detailed information on transcriptional changes during J. curcas seed maturation and provides a starting point for a genomic survey of seed quality traits. The results highlighted specific genes and processes relevant to the molecular mechanisms involved in Jatropha seed maturation. These data can also be utilized regarding other Euphorbiaceae species.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3