Abstract
Abstract
Background
Monochamus alternatus Hope is one of the insect vectors of pinewood nematode (Bursaphelenchus xylophilus), which causes the destructive pine wilt disease. The microorganisms within the ecosystem, comprising plants, their environment, and insect vectors, form complex networks. This study presents a systematic analysis of the bacterial microbiota in the M. alternatus midgut and its habitat niche.
Methods
Total DNA was extracted from 20 types of samples (with three replicates each) from M. alternatus and various tissues of healthy and infected P. massoniana (pines). 16S rDNA amplicon sequencing was conducted to determine the composition and diversity of the bacterial microbiota in each sample. Moreover, the relative abundances of bacteria in the midgut of M. alternatus larvae were verified by counting the colony-forming units.
Results
Pinewood nematode infection increased the microbial diversity in pines. Bradyrhizobium, Burkholderia, Dyella, Mycobacterium, and Mucilaginibacter were the dominant bacterial genera in the soil and infected pines. These results indicate that the bacterial community in infected pines may be associated with the soil microbiota. Interestingly, the abundance of the genus Gryllotalpicola was highest in the bark of infected pines. The genus Cellulomonas was not found in the midgut of M. alternatus, but it peaked in the phloem of infected pines, followed by the phloem of heathy pines. Moreover, the genus Serratia was not only present in the habitat niche, but it was also enriched in the M. alternatus midgut. The colony-forming unit assays showed that the relative abundance of Serratia sp. peaked in the midgut of instar II larvae (81%).
Conclusions
Overall, the results indicate that the bacterial microbiota in the soil and in infected pines are correlated. The Gryllotalpicola sp. and Cellulomonas sp. are potential microbial markers of pine wilt disease. Additionally, Serratia sp. could be an ideal agent for expressing insecticidal protein in the insect midgut by genetic engineering, which represents a new use of microbes to control M. alternatus.
Funder
National Key Research and Development Program
National Natural Science Foundation of China
Science Fund for Distinguished Young Scholars of Fujian Agriculture and Forestry University
China Postdoctoral Science Foundation
Forestry Science Research Project of Fujian Forestry Department
Forest Science Peak Project of College of Forestry , Fujian Agriculture and Forestry University
Undergraduate Training Programme for Innovation and Entrepreneurship of China
Fujian Provincial Department of Science and Technology
Publisher
Springer Science and Business Media LLC
Reference81 articles.
1. Proença DN, Grass G, Morais PV. Understanding pine wilt disease: roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode. Microbiol Open 2017; 6(2):e415.
2. Ryss A, Vieira P, Mota M, Kulinich O. A synopsis of the genus Bursaphelenchus Fuchs, 1937 (Aphelenchida: Parasitaphelenchidae) with key to species. Nematology. 2005;7(3):393–458.
3. Zhao LL, Mota M, Vieira P, Butcher RA, Sun JH. Interspecific communication between pinewood nematode, its insect vector, and associated microbes. Trends Parasitol. 2014;30(6):299–308.
4. Mamiya Y, Shoji T. Pathogenicity of the pinewood nematode, Bursaphelenchus xylophilus, to Japanese larch, Larix kaempferi, seedlings. J Nematol. 2009;41(2):157–62.
5. Zhao BG. Pine Wilt Disease in China. In: Zhao BG, Futai K, Sutherland JR, Takeuchi Y, editors. Pine Wilt Disease. Tokyo: Springer; 2008.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献