High-density genetic linkage map construction and cane cold hardiness QTL mapping for Vitis based on restriction site-associated DNA sequencing

Author:

Su Kai,Xing Huiyang,Guo YinshanORCID,Zhao Fangyuan,Liu Zhendong,Li Kun,Li Yuanyuan,Guo Xiuwu

Abstract

Abstract Background Cold hardiness is an important agronomic trait and can significantly affect grape production and quality. Until now, there are no reports focusing on cold hardiness quantitative trait loci (QTL) mapping. In this study, grapevine interspecific hybridisation was carried out with the maternal parent ‘Cabernet sauvignon’ and paternal parent ‘Zuoyouhong’. A total of 181 hybrid offspring and their parents were used as samples for restriction-site associated DNA sequencing (RAD). Grapevine cane phloem and xylem cold hardiness of the experimental material was detected using the low-temperature exotherm method in 2016, 2017 and 2018. QTL mapping was then conducted based on the integrated map. Results We constructed a high-density genetic linkage map with 16,076, 11,643, and 25,917 single-nucleotide polymorphism (SNP) markers anchored in the maternal, paternal, and integrated maps, respectively. The average genetic distances of adjacent markers in the maps were 0.65 cM, 0.77 cM, and 0.41 cM, respectively. Colinearity analysis was conducted by comparison with the grape reference genome and showed good performance. Six QTLs were identified based on the phenotypic data of 3 years and they were mapped on linkage group (LG) 2, LG3, and LG15. Based on QTL results, candidate genes which may be involved in grapevine cold hardiness were selected. Conclusions High-density linkage maps can facilitate grapevine fine QTL mapping, genome comparison, and sequence assembly. The cold hardiness QTL mapping and candidate gene discovery performed in this study provide an important reference for molecular-assisted selection in grapevine cold hardiness breeding.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Agriculture Research System of China

Shenyang Science and Technology Bureau

Department of Science and Technology of Liaoning Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference81 articles.

1. Levitt J. Responses of plants to environmental stress. Chilling, freezing, and high temperature stresses. New York: Academic; 1980.

2. Fennell A. Freezing tolerance and injury in grapevines. J Crop Improv. 2004;10:201–35.

3. Guo YS, Shi GL, Liu ZD, Zhao YH, Yang XX, Zhu JC, et al. Using specific length amplified fragment sequencing to construct the high-density genetic map for Vitis (Vitis vinifera L.×Vitis amurensis Rupr.). Front Plant Sci. 2015;6:393.

4. Jiang J, Fan X, Zhang Y, Tang X, Li X, Liu C, et al. Construction of a High-density genetic map and mapping of firmness in grapes (Vitis vinifera L.) based on whole-genome resequencing. Int J Mol Sci. 2020;21(3):797.

5. Smith HM, Clarke CW, Smith BP, Carmody BM, Thomas MR, Clingeleffer PR, et al. Genetic identification of SNP markers linked to a new grape phylloxera resistant locus in Vitis cinerea for marker-assisted selection. BMC Plant Biol. 2018;18(1):360.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3