Abstract
Abstract
Background
Cold hardiness is an important agronomic trait and can significantly affect grape production and quality. Until now, there are no reports focusing on cold hardiness quantitative trait loci (QTL) mapping. In this study, grapevine interspecific hybridisation was carried out with the maternal parent ‘Cabernet sauvignon’ and paternal parent ‘Zuoyouhong’. A total of 181 hybrid offspring and their parents were used as samples for restriction-site associated DNA sequencing (RAD). Grapevine cane phloem and xylem cold hardiness of the experimental material was detected using the low-temperature exotherm method in 2016, 2017 and 2018. QTL mapping was then conducted based on the integrated map.
Results
We constructed a high-density genetic linkage map with 16,076, 11,643, and 25,917 single-nucleotide polymorphism (SNP) markers anchored in the maternal, paternal, and integrated maps, respectively. The average genetic distances of adjacent markers in the maps were 0.65 cM, 0.77 cM, and 0.41 cM, respectively. Colinearity analysis was conducted by comparison with the grape reference genome and showed good performance. Six QTLs were identified based on the phenotypic data of 3 years and they were mapped on linkage group (LG) 2, LG3, and LG15. Based on QTL results, candidate genes which may be involved in grapevine cold hardiness were selected.
Conclusions
High-density linkage maps can facilitate grapevine fine QTL mapping, genome comparison, and sequence assembly. The cold hardiness QTL mapping and candidate gene discovery performed in this study provide an important reference for molecular-assisted selection in grapevine cold hardiness breeding.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Liaoning Province
Agriculture Research System of China
Shenyang Science and Technology Bureau
Department of Science and Technology of Liaoning Province
Publisher
Springer Science and Business Media LLC
Reference81 articles.
1. Levitt J. Responses of plants to environmental stress. Chilling, freezing, and high temperature stresses. New York: Academic; 1980.
2. Fennell A. Freezing tolerance and injury in grapevines. J Crop Improv. 2004;10:201–35.
3. Guo YS, Shi GL, Liu ZD, Zhao YH, Yang XX, Zhu JC, et al. Using specific length amplified fragment sequencing to construct the high-density genetic map for Vitis (Vitis vinifera L.×Vitis amurensis Rupr.). Front Plant Sci. 2015;6:393.
4. Jiang J, Fan X, Zhang Y, Tang X, Li X, Liu C, et al. Construction of a High-density genetic map and mapping of firmness in grapes (Vitis vinifera L.) based on whole-genome resequencing. Int J Mol Sci. 2020;21(3):797.
5. Smith HM, Clarke CW, Smith BP, Carmody BM, Thomas MR, Clingeleffer PR, et al. Genetic identification of SNP markers linked to a new grape phylloxera resistant locus in Vitis cinerea for marker-assisted selection. BMC Plant Biol. 2018;18(1):360.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献