Author:
Gand Mathieu,Bloemen Bram,Vanneste Kevin,Roosens Nancy H. C.,De Keersmaecker Sigrid C. J.
Abstract
Abstract
Background
Oxford Nanopore Technologies (ONT) offers an accessible platform for long-read sequencing, which improves the reconstruction of genomes and helps to resolve complex genomic contexts, especially in the case of metagenome analysis. To take the best advantage of long-read sequencing, DNA extraction methods must be able to isolate pure high molecular weight (HMW) DNA from complex metagenomics samples, without introducing any bias. New methods released on the market, and protocols developed at the research level, were specifically designed for this application and need to be assessed.
Results
In this study, with different bacterial cocktail mixes, analyzed as pure or spiked in a synthetic fecal matrix, we evaluated the performances of 6 DNA extraction methods using various cells lysis and purification techniques, from quick and easy, to more time-consuming and gentle protocols, including a portable method for on-site application. In addition to the comparison of the quality, quantity and purity of the extracted DNA, the performance obtained when doing Nanopore sequencing on a MinION flow cell was also tested. From the obtained results, the Quick-DNA HMW MagBead Kit (Zymo Research) was selected as producing the best yield of pure HMW DNA. Furthermore, this kit allowed an accurate detection, by Nanopore sequencing, of almost all the bacterial species present in a complex mock community.
Conclusion
Amongst the 6 tested methods, the Quick-DNA HMW MagBead Kit (Zymo Research) was considered as the most suitable for Nanopore sequencing and would be recommended for bacterial metagenomics studies using this technology.
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Hu T, Chitnis N, Monos D, Dinh A. Next-generation sequencing technologies: An overview. Hum Immunol. 2021;82:801–11.
2. Kwong JC, McCallum N, Sintchenko V, Howden BP. Whole genome sequencing in clinical and public health microbiology. Pathology (Phila). 2015;47:199–210.
3. Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2017;23:2–22.
4. Nouws S, Bogaerts B, Verhaegen B, Denayer S, Crombé F, De Rauw K, et al. The Benefits of Whole Genome Sequencing for Foodborne Outbreak Investigation from the Perspective of a National Reference Laboratory in a Smaller Country. Foods. 2020;9:1030.
5. Nouws S, Bogaerts B, Verhaegen B, Denayer S, Laeremans L, Marchal K, et al. Whole Genome Sequencing Provides an Added Value to the Investigation of Staphylococcal Food Poisoning Outbreaks. Front Microbiol. 2021;12:750278.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献