A novel method to identify gene interaction patterns

Author:

Lu XinguoORCID,Liu Fang,Miao Qiumai,Liu Ping,Gao Yan,He Keren

Abstract

Abstract Background Gene interaction patterns, including modules and motifs, can be used to identify cancer specific biomarkers and to reveal the mechanism of tumorigenesis. Most of the existing module network inferencing methods focus on gene independent functional patterns, while the studies of overlapping characteristics between modules are lacking. The objective of this study was to reveal the functional overlapping patterns in gene modules, helping elucidate the regulatory relationship between overlapping genes and communities, as well as to explore cancer formation and progression. Results We analyzed six cancer datasets from The Cancer Genome Atlas and obtained three kinds of gene functional modules for each cancer, including Independent-Community, Dependent-Community and Merged-Community. In the six cancers, 59(3.5%) Independent-Communities were identified, while 1631(96.5%) Dependent-Communities were acquired. Compared with Lemon-Tree and K-Means, the gene communities identified by our method were enriched in more known GO categories with lower p-values. Meanwhile, those identified distinguishing communities can significantly distinguish the survival prognostic of patients by Kaplan-Meier analysis. Furthermore, identified driver genes in the gene communities can be considered as biomarkers which can accurately distinguish the tumour or normal samples for each cancer type. Conclusions In all identified communities, Dependent-Communities are the majority. Our method is more effective than the other two methods which do not consider the overlapping characteristics of modules. This indicates that overlapping genes are located in different specific functional groups, and a communication bridge is established between the communities to construct a comprehensive carcinogenesis.

Funder

National Natural Science Foundation of China

Natural Science Foundation of?Hunan Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3