Abstract
Abstract
Background
The fall webworm Hyphantria cunea is an invasive and polyphagous defoliator pest that feeds on nearly any type of deciduous tree worldwide. The silk web of H. cunea aids its aggregating behavior, provides thermal regulation and is regarded as one of causes for its rapid spread. In addition, both chemosensory and detoxification genes are vital for host adaptation in insects.
Results
Here, a high-quality genome of H. cunea was obtained. Silk-web-related genes were identified from the genome, and successful silencing of the silk protein gene HcunFib-H resulted in a significant decrease in silk web shelter production. The CAFE analysis showed that some chemosensory and detoxification gene families, such as CSPs, CCEs, GSTs and UGTs, were expanded. A transcriptome analysis using the newly sequenced H. cunea genome showed that most chemosensory genes were specifically expressed in the antennae, while most detoxification genes were highly expressed during the feeding peak. Moreover, we found that many nutrient-related genes and one detoxification gene, HcunP450 (CYP306A1), were under significant positive selection, suggesting a crucial role of these genes in host adaptation in H. cunea. At the metagenomic level, several microbial communities in H. cunea gut and their metabolic pathways might be beneficial to H. cunea for nutrient metabolism and detoxification, and might also contribute to its host adaptation.
Conclusions
These findings explain the host and environmental adaptations of H. cunea at the genetic level and provide partial evidence for the cause of its rapid invasion and potential gene targets for innovative pest management strategies.
Funder
Open Project Program of the Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization
National Natural Science Foundation of China
Natural Science Foundation of Jilin Province
Foundation of Xinjiang Uygur Autonomous Region
The Fundamental Research Funds for the Central Universities
Fund for Fostering Talents in Basic Science of the National Natural Science
Undergraduate teaching quality and teaching reform project of Northeast Normal University
Publisher
Springer Science and Business Media LLC
Reference199 articles.
1. Schowalter T, Ring D. Biology and Management of the Fall Webworm, Hyphantria cunea (Lepidoptera: Erebidae). J Integr Pest Manage. 2017;8(1):7.
2. Ge X, He S, Zhu C, Wang T, Xu Z, Zong S. Projecting the current and future potential global distribution of Hyphantria cunea (Lepidoptera: Arctiidae) using CLIMEX[J]. Pest Manag Sci. 2019;75(1):160-69.
3. Cocquempot C, Lindelöw A. BIORISK-biodiversity and ecosystem risk assessment, vol. 4. Sofia: Pensoft Publishers; 2010. p. 193–218.
4. Sullivan GT, Karaca I, Ozman-Sullivan SK, Kara K. Tachinid (Diptera: Tachinidae) parasitoids of overwintered Hyphantria cunea (Drury)(Lepidoptera: Arctiidae) pupae in hazelnut plantations in Samsun province, Turkey. J Ent Res Soc. 2012;14:21–30.
5. Chapman R. Chemosensory regulation of feeding. Regulatory mechanisms in insect feeding: Springer; 1995. p. 101–36.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献