Transcriptomic and metabolomic characterization of post-hatch metabolic reprogramming during hepatic development in the chicken

Author:

Van Every Heidi A.,Schmidt Carl J.

Abstract

Abstract Background Artificial selection of modern meat-producing chickens (broilers) for production characteristics has led to dramatic changes in phenotype, yet the impact of this selection on metabolic and molecular mechanisms is poorly understood. The first 3 weeks post-hatch represent a critical period of adjustment, during which the yolk lipid is depleted and the bird transitions to reliance on a carbohydrate-rich diet. As the liver is the major organ involved in macronutrient metabolism and nutrient allocatytion, a combined transcriptomics and metabolomics approach has been used to evaluate hepatic metabolic reprogramming between Day 4 (D4) and Day 20 (D20) post-hatch. Results Many transcripts and metabolites involved in metabolic pathways differed in their abundance between D4 and D20, representing different stages of metabolism that are enhanced or diminished. For example, at D20 the first stage of glycolysis that utilizes ATP to store or release glucose is enhanced, while at D4, the ATP-generating phase is enhanced to provide energy for rapid cellular proliferation at this time point. This work has also identified several metabolites, including citrate, phosphoenolpyruvate, and glycerol, that appear to play pivotal roles in this reprogramming. Conclusions At Day 4, metabolic flexibility allows for efficiency to meet the demands of rapid liver growth under oxygen-limiting conditions. At Day 20, the liver’s metabolism has shifted to process a carbohydrate-rich diet that supports the rapid overall growth of the modern broiler. Characterizing these metabolic changes associated with normal post-hatch hepatic development has generated testable hypotheses about the involvement of specific genes and metabolites, clarified the importance of hypoxia to rapid organ growth, and contributed to our understanding of the molecular changes affected by decades of artificial selection.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3