Analysis of the complete genome sequence of Paenibacillus sp. lzh-N1 reveals its antagonistic ability

Author:

Li Ee,Liu Kaiquan,Yang Shuhan,Li Ling,Ran Kun,Sun Xiaoli,Qu Jie,Zhao Li,Xin Yuxiu,Zhu Feng,Ma Jingfang,Song Feng,Li Zhenghua

Abstract

Abstract Background Plant diseases caused by pathogenic fungi are devastating. However, commonly used fungicides are harmful to the environment, and some are becoming ineffective due to fungal resistance. Therefore, eco-friendly biological methods to control pathogenic fungi are urgently needed. Results In this study, a strain, Paenibacillus sp. lzh-N1, that could inhibit the growth of the pathogenic fungus Mycosphaerella sentina (Fr) Schrorter was isolated from the rhizosphere soil of pear trees, and the complete genome sequence of the strain was obtained, annotated, and analyzed to reveal the genetic foundation of its antagonistic ability. The entire genome of this strain contained a circular chromosome of 5,641,488 bp with a GC content of 45.50%. The results of species identification show that the strain belongs to the same species as P. polymyxa Sb3-1 and P. polymyxa CJX518. Sixteen secondary metabolic biosynthetic gene clusters were predicted by antiSMASH, including those of the antifungal peptides fusaricidin B and paenilarvins. In addition, biofilm formation-related genes containing two potential gene clusters for cyclic lactone autoinducer, a gene encoding S-ribosylhomocysteine lyase (LuxS), and three genes encoding exopolysaccharide biosynthesis protein were identified. Conclusions Antifungal peptides and glucanase biosynthesized by Paenibacillus sp. lzh-N1 may be responsible for its antagonistic effect. Moreover, quorum sensing systems may influence the biocontrol activity of this strain directly or indirectly.

Funder

Natural Science Foundation of Shandong Province

Project of the Talent Introduction of Dezhou University

Foundation of Qilu University of Technology of Cultivating Subject for Biology and Biochemistry

Foundation of International Technology Cooperation Project from Shandong Academy of Sciences

Foundation from Shandong Provincial Key Laboratory of Biophysics

National Natural Science Foundation of China

Shandong Students’ platform for innovation and entrepreneurship training program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3