Pulmonary artery embolism: comprehensive transcriptomic analysis in understanding the pathogenic mechanisms of the disease

Author:

Gromadziński Leszek,Paukszto Łukasz,Lepiarczyk Ewa,Skowrońska Agnieszka,Lipka Aleksandra,Makowczenko Karol G.,Łopieńska-Biernat Elżbieta,Jastrzębski Jan P.,Holak Piotr,Smoliński Michał,Majewska Marta

Abstract

Abstract Background Pulmonary embolism (PE) is a severe disease that usually originates from deep vein thrombosis (DVT) of the lower extremities. This study set out to investigate the changes in the transcriptome of the pulmonary artery (PA) in the course of the PE in the porcine model. Methods The study was performed on 11 male pigs: a thrombus was formed in each right femoral vein in six animals, and then was released to induce PE, the remaining five animals served as a control group. In the experimental animals total RNA was isolated from the PA where the blood clot lodged, and in the control group, from the corresponding PA segments. High-throughput RNA sequencing was used to analyse the global changes in the transcriptome of PA with induced PE (PA-E). Results Applied multistep bioinformatics revealed 473 differentially expressed genes (DEGs): 198 upregulated and 275 downregulated. Functional Gene Ontology annotated 347 DEGs into 27 biological processes, 324 to the 11 cellular components and 346 to the 2 molecular functions categories. In the signaling pathway analysis, KEGG ‘protein processing in endoplasmic reticulum’ was identified for the mRNAs modulated during PE. The same KEGG pathway was also exposed by 8 differentially alternative splicing genes. Within single nucleotide variants, the 61 allele-specific expression variants were localised in the vicinity of the genes that belong to the cellular components of the ‘endoplasmic reticulum’. The discovered allele-specific genes were also classified as signatures of the cardiovascular system. Conclusions The findings of this research provide the first thorough investigation of the changes in the gene expression profile of PA affected by an embolus. Evidence from this study suggests that the disturbed homeostasis in the biosynthesis of proteins in the endoplasmic reticulum plays a major role in the pathogenesis of PE.

Funder

Uniwersytet Warmińsko-Mazurski w Olsztynie

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Acute Pulmonary Embolism and Immunity in Animal Models;Archivum Immunologiae et Therapiae Experimentalis;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3