Abstract
AbstractBackgroundWhile leeches in the genusHirudohave long been models for neurobiology, the molecular underpinnings of nervous system structure and function in this group remain largely unknown. To begin to bridge this gap, we performed RNASeq on pools of identified neurons of the central nervous system (CNS): sensory T (touch), P (pressure) and N (nociception) neurons; neurosecretory Retzius cells; and ganglia from which these four cell types had been removed.ResultsBioinformatic analyses identified 3565 putative genes whose expression differed significantly among the samples. These genes clustered into 9 groups which could be associated with one or more of the identified cell types. We verified predicted expression patterns through in situ hybridization on whole CNS ganglia, and found that orthologous genes were for the most part similarly expressed in a divergent leech genus, suggesting evolutionarily conserved roles for these genes. Transcriptional profiling allowed us to identify candidate phenotype-defining genes from expanded gene families. Thus, we identified one of eight hyperpolarization-activated cyclic-nucleotide gated (HCN) channels as a candidate for mediating the prominent sag current in P neurons, and found that one of five inositol triphosphate receptors (IP3Rs), representing a sub-family of IP3Rs absent from vertebrate genomes, is expressed with high specificity in T cells. We also identified one of twopiezogenes, two of ~ 65 deg/enacgenes, and one of at least 16transient receptor potential(trp) genes as prime candidates for involvement in sensory transduction in the three distinct classes of leech mechanosensory neurons.ConclusionsOur study defines distinct transcriptional profiles for four different neuronal types within the leech CNS, in addition to providing a second ganglionic transcriptome for the species. From these data we identified five gene families that may facilitate the sensory capabilities of these neurons, thus laying the basis for future work leveraging the strengths of the leech system to investigate the molecular processes underlying and linking mechanosensation, cell type specification, and behavior.
Funder
National Institute of Neurological Disorders and Stroke
Human Frontier Science Program
University of California Institute for Mexico and the United States
Publisher
Springer Science and Business Media LLC
Reference95 articles.
1. Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, Kowalczyk M, et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell. 2016;166(5):1308–1323.e30.
2. Diamond JS. Inhibitory interneurons in the retina: types, circuitry, and function. Annu Rev Vis Sci. 2017;3:1–24.
3. Laboissonniere LA, Sonoda T, Lee SK, Trimarchi JM, Schmidt TM. Single-cell RNA-Seq of defined subsets of retinal ganglion cells. JoVE J Vis Exp. 2017;123:e55229.
4. Waylen LN, Nim HT, Martelotto LG, Ramialison M. From whole-mount to single-cell spatial assessment of gene expression in 3D. Commun Biol. 2020;3(1):1–11.
5. Sattelle DB, Buckingham SD. Invertebrate studies and their ongoing contributions to neuroscience. Invertebr Neurosci IN. 2006;6(1):1–3. https://doi.org/10.1007/s10158-005-0014-7.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献