A highly mutable GST is essential for bract colouration in Euphorbia pulcherrima Willd. Ex Klotsch

Author:

Vilperte Vinicius,Boehm Robert,Debener ThomasORCID

Abstract

AbstractBackgroundMutation breeding is an extraordinary tool in plant breeding to increase the genetic variability, where mutations in anthocyanin biosynthesis are targets to generate distinctive phenotypes in ornamental species. In poinsettia, ionizing radiation is routinely applied in breeding programs to obtaining a range of colours, with nearly all pink and white varieties being obtained after γ- or X-ray mutagenesis of red varieties. In the present study we performed a thorough characterization of a potential mutagenesis target gene as the main responsible for the ‘white paradox’ in poinsettia.ResultsWe identified aGSTgene in poinsettia (Bract1) as an essential factor for the expression of anthocyanin-based red colouration of bracts, which presents a high phylogenetic similarity to known anthocyanin-related GSTs. Red poinsettia varieties and white mutants generated from these varieties by X-ray were analysed for polymorphisms related to the ‘white paradox’ in the species. A 4 bp mutation in a short repeat within the coding region ofBract1is most likely responsible for the appearance of white phenotypes upon irradiation treatment. The polymorphism between wild-type and mutant alleles co-segregates with the phenotype in progeny from heterozygous red and white parents. Moreover, overexpression ofBract1wild-type allele in Arabidopsistt19mutants restored the anthocyanin phenotype, while theBract1mutated allele showed to be non-functional.ConclusionsThe identified repeat seems to be highly unstable, since mutated plants can be easily detected among fewer than 200 shoots derived from 10 mutated plants. Our data indicate that particular short repeat sequences, similar to microsatellite sequences or so-called dynamic mutations, might be hot spots for genetic variability. Moreover, the identification of theBract1mutation fills a gap on the understanding on the molecular mechanism of colour formation in poinsettia.

Funder

H2020 Marie Skłodowska-Curie Actions

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3