Abstract
Abstract
Background
Flammulina velutipes has been recognized as a useful basidiomycete with nutritional and medicinal values. Ergosterol, one of the main sterols of F. velutipes is an important precursor of novel anticancer and anti-HIV drugs. Therefore, many studies have focused on the biosynthesis of ergosterol and have attempted to upregulate its content in multiple organisms. Great progress has been made in understanding the regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. However, this molecular mechanism in F. velutipes remains largely uncharacterized.
Results
In this study, nine cDNA libraries, prepared from mycelia, young fruiting bodies and mature fruiting bodies of F. velutipes (three replicate sets for each stage), were sequenced using the Illumina HiSeq™ 4000 platform, resulting in at least 6.63 Gb of clean reads from each library. We studied the changes in genes and metabolites in the ergosterol biosynthesis pathway of F. velutipes during the development of fruiting bodies. A total of 13 genes (6 upregulated and 7 downregulated) were differentially expressed during the development from mycelia to young fruiting bodies (T1), while only 1 gene (1 downregulated) was differentially expressed during the development from young fruiting bodies to mature fruiting bodies (T2). A total of 7 metabolites (3 increased and 4 reduced) were found to have changed in content during T1, and 4 metabolites (4 increased) were found to be different during T2. A conjoint analysis of the genome-wide connection network revealed that the metabolites that were more likely to be regulated were primarily in the post-squalene pathway.
Conclusions
This study provides useful information for understanding the regulation of ergosterol biosynthesis and the regulatory relationship between metabolites and genes in the ergosterol biosynthesis pathway during the development of fruiting bodies in F. velutipes.
Funder
Science and Technology Coordination Innovation Project of Shaanxi Province
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献