GCSscore: an R package for differential gene expression analysis in Affymetrix/Thermo-Fisher whole transcriptome microarrays

Author:

Harris Guy M.,Abbas Shahroze,Miles Michael F.ORCID

Abstract

Abstract Background Despite the increasing use of RNAseq for transcriptome analysis, microarrays remain a widely-used methodology for genomic studies. The latest generation of Affymetrix/Thermo-Fisher microarrays, the ClariomD/XTA and ClariomS array, provide a sensitive and facile method for complex transcriptome expression analysis. However, existing methods of analysis for these high-density arrays do not leverage the statistical power contained in having multiple oligonucleotides representing each gene/exon, but rather summarize probes into a single expression value. We previously developed a methodology, the Sscore algorithm, for probe-level identification of differentially expressed genes (DEGs) between treatment and control samples with oligonucleotide microarrays. The Sscore algorithm was validated for sensitive detection of DEGs by comparison with existing methods. However, the prior version of the Sscore algorithm and a R-based implementation software, sscore, do not function with the latest generations of Affymetrix/Fisher microarrays due to changes in microarray design that eliminated probes previously used for estimation of non-specific binding. Results Here we describe the GCSscore algorithm, which utilizes the GC-content of a given oligonucleotide probe to estimate non-specific binding using antigenomic background probes found on new generations of arrays. We implemented this algorithm in an improved GCSscore R package for analysis of modern oligonucleotide microarrays. GCSscore has multiple methods for grouping individual probes on the ClariomD/XTA chips, providing the user with differential expression analysis at the gene-level and the exon-level. By utilizing the direct probe-level intensities, the GCSscore algorithm was able to detect DEGs under stringent statistical criteria for all Clariom-based arrays. We demonstrate that for older 3′-IVT arrays, GCSscore produced very similar differential gene expression analysis results compared to the original Sscore method. However, GCSscore functioned well for both the ClariomS and ClariomD/XTA newer microarrays and outperformed existing analysis approaches insofar as the number of DEGs and cognate biological functions identified. This was particularly striking for analysis of the highly complex ClariomD/XTA based arrays. Conclusions The GCSscore package represents a powerful new application for analysis of the newest generation of oligonucleotide microarrays such as the ClariomS and ClariomD/XTA arrays produced by Affymetrix/Fisher.

Funder

National Institute on Alcohol Abuse and Alcoholism

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3