Author:
Feitzinger Anna A.,Le Anthony,Thompson Ammon,Haseeb Mehnoor,Murugesan Mohan Koumar,Tang Austin M.,Lott Susan E.
Abstract
AbstractBackgroundMaternal gene products supplied to the egg during oogenesis drive the earliest events of development in all metazoans. After the initial stages of embryogenesis, maternal transcripts are degraded as zygotic transcription is activated; this is known as the maternal to zygotic transition (MZT). Recently, it has been shown that the expression of maternal and zygotic transcripts have evolved in the Drosophila genus over the course of 50 million years. However, the extent of natural variation of maternal and zygotic transcripts within a species has yet to be determined. We asked how the maternal and zygotic pools of mRNA vary within and between populations ofD. melanogaster.In order to maximize sampling of genetic diversity, African lines ofD. melanogasteroriginating from Zambia as well as DGRP lines originating from North America were chosen for transcriptomic analysis.ResultsGenerally, we find that maternal transcripts are more highly conserved, and zygotic transcripts evolve at a higher rate. We find that there is more within-population variation in transcript abundance than between populations and that expression variation is highest post- MZT between African lines.ConclusionsDetermining the natural variation of gene expression surrounding the MZT in natural populations ofD. melanogastergives insight into the extent of how a tightly regulated process may vary within a species, the extent of developmental constraint at both stages and on both the maternal and zygotic genomes, and reveals expression changes allowing this species to adapt as it spread across the world.
Funder
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献