Author:
Huo Yi,Sheng Zhen,Lu Daniel R.,Ellwanger Daniel C.,Li Chi-Ming,Homann Oliver,Wang Songli,Yin Hong,Ren Ruibao
Abstract
Abstract
Background
Bi-specific T-cell engager (BiTE) antibody is a class of bispecific antibodies designed for cancer immunotherapy. Blinatumomab is the first approved BiTE to treat acute B cell lymphoblastic leukemia (B-ALL). It brings killer T and target B cells into close proximity, activating patient’s autologous T cells to kill malignant B cells via mechanisms such as cytolytic immune synapse formation and inflammatory cytokine production. However, the activated T-cell subtypes and the target cell-dependent T cell responses induced by blinatumomab, as well as the mechanisms of resistance to blinatumomab therapy are largely unknown.
Results
In this study, we performed single-cell sequencing analysis to identify transcriptional changes in T cells following blinatumomab-induced T cell activation using single cells from both, a human cell line model and a patient-derived model of blinatumomab-mediated cytotoxicity. In total, the transcriptome of 17,920 single T cells from the cell line model and 2271 single T cells from patient samples were analyzed. We found that CD8+ effector memory T cells, CD4+ central memory T cells, naïve T cells, and regulatory T cells were activated after blinatumomab treatment. Here, blinatumomab-induced transcriptional changes reflected the functional immune activity of the blinatumomab-activated T cells, including the upregulation of pathways such as the immune system, glycolysis, IFNA signaling, gap junctions, and IFNG signaling. Co-stimulatory (TNFRSF4 and TNFRSF18) and co-inhibitory (LAG3) receptors were similarly upregulated in blinatumomab-activated T cells, indicating ligand-dependent T cell functions. Particularly, B-ALL cell expression of TNFSF4, which encodes the ligand of T cell co-stimulatory receptor TNFRSF4, was found positively correlated with the response to blinatumomab treatment. Furthermore, recombinant human TNFSF4 protein enhanced the cytotoxic activity of blinatumomab against B-ALL cells.
Conclusion
These results reveal a target cell-dependent mechanism of T-cell activation by blinatumomab and suggest that TNFSF4 may be responsible for the resistant mechanism and a potential target for combination therapy with blinatumomab, to treat B-ALL or other B-cell malignancies.
Funder
National Key Research and Development Program
Key Project of Natural Science Foundation of China
Shanghai Collaborative Innovation Program on Regenerative Medicine and Stem Cell Research
Natural Science Foundation of China
the Innovative research team of high-level local universities in Shanghai
Publisher
Springer Science and Business Media LLC
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献