Author:
Li Yang,Zhang Heng,Zhang Yongxue,Liu Yanshuang,Li Yueyue,Tian Haodong,Guo Siyi,Sun Meihong,Qin Zhi,Dai Shaojun
Abstract
Abstract
Background
Brassinosteroid (BR)- signaling kinase (BSK) is a critical family of receptor-like cytoplasmic kinase for BR signal transduction, which plays important roles in plant development, immunity, and abiotic stress responses. Spinach (Spinacia oleracea) is cold- tolerant but heat- sensitive green leafy vegetable. A study on BSK family members and BSKs- mediated metabolic processes in spinach has not been performed.
Results
We identified and cloned seven SoBSKs in spinach. Phylogenetic and collinearity analyses suggested that SoBSKs had close relationship with dicotyledonous sugar beet (Beta vulgaris) rather than monocotyledons. The analyses of gene structure and conserved protein domain/ motif indicated that most SoBSKs were relative conserved, while SoBSK6 could be a truncated member. The prediction of post-translation modification (PTM) sites in SoBSKs implied their possible roles in signal transduction, redox regulation, and protein turnover of SoBSKs, especially the N-terminal myristoylation site was critical for BSK localization to cell periphery. Cis-acting elements for their responses to light, drought, temperature (heat and cold), and hormone distributed widely in the promoters of SoBSKs, implying the pivotal roles of SoBSKs in response to diverse abiotic stresses and phytohormone stimuli. Most SoBSKs were highly expressed in leaves, except for SoBSK7 in roots. Many SoBSKs were differentially regulated in spinach heat- sensitive variety Sp73 and heat- tolerant variety Sp75 under the treatments of heat, cold, as well as exogenous brassinolide (BL) and abscisic acid (ABA). The bsk134678 mutant Arabidopsis seedlings exhibited more heat tolerance than wild- type and SoBSK1- overexpressed seedlings.
Conclusions
A comprehensive genome- wide analysis of the BSK gene family in spinach presented a global identification and functional prediction of SoBSKs. Seven SoBSKs had relatively- conserved gene structure and protein function domains. Except for SoBSK6, all the other SoBSKs had similar motifs and conserved PTM sites. Most SoBSKs participated in the responses to heat, cold, BR, and ABA. These findings paved the way for further functional analysis on BSK- mediated regulatory mechanisms in spinach development and stress response.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanghai
Fund of Central Government Guides Local Science and Technology Development, China
Fund of Shanghai Engineering Research Center of Plant Germplasm Resources, China
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献