Comparing methylation levels assayed in GC-rich regions with current and emerging methods

Author:

Guanzon Dominic,Ross Jason P,Ma Chenkai,Berry Oliver,Liew Yi Jin

Abstract

AbstractDNA methylation is an epigenetic mechanism that regulates gene expression, and for mammals typically occurs on cytosines within CpG dinucleotides. A significant challenge for methylation detection methods is accurately measuring methylation levels within GC-rich regions such as gene promoters, as inaccuracies compromise downstream biological interpretation of the data. To address this challenge, we compared methylation levels assayed using four different Methods Enzymatic Methyl-seq (EM-seq), whole genome bisulphite sequencing (WGBS), Infinium arrays (Illumina MethylationEPIC, “EPIC”), and Oxford Nanopore Technologies nanopore sequencing (ONT) applied to human DNA. Overall, all methods produced comparable and consistent methylation readouts across the human genome. The flexibility offered by current gold standard WGBS in interrogating genome-wide cytosines is surpassed technically by both EM-seq and ONT, as their coverages and methylation readouts are less prone to GC bias. These advantages are tempered by increased laboratory time (EM-seq) and higher complexity (ONT). We further assess the strengths and weaknesses of each method, and provide recommendations in choosing the most appropriate methylation method for specific scientific questions or translational needs.

Funder

Bioplatforms Australia

Environomics Future Science Platform, CSIRO

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3