Author:
Wang Yan,Luo Hang,Wang Haining,Xiang Zongjing,Wei Songhong,Zheng Wenjing
Abstract
Abstract
Background
Rice sheath blight, which is caused by Rhizoctonia solani, is the most destructive disease affecting rice production, but the resistance mechanism to this pathogen has not been fully elucidated.
Results
In this study, we selected two rice cultivars based on their resistance to the pathogen and analyzed and compared the transcriptomic profiles of two cultivars, the moderately resistant variety Gangyuan8 and the highly susceptible variety Yanfeng47, at different time points after inoculation. The comparative transcriptome profiling showed that the expression of related genes gradually increased after pathogen inoculation. The number of differentially expressed genes (DEGs) in Yanfeng47 was higher than that in Gangyuan8, and this result revealed that Yanfeng47 was more susceptible to fungal attack. At the early stage (24 and 48 h), the accumulation of resistance genes and a resistance metabolism occurred earlier in Ganguan8 than in Yanfeng47, and the resistance enrichment entries were more abundant in Ganguan8 than in Yanfeng47.
Conclusions
Based on the GO and KEGG enrichment analyses at five infection stages, we concluded that phenylalanine metabolism and the jasmonic acid pathway play a crucial role in the resistance of rice to sheath blight. Through a comparative transcriptome analysis, we preliminarily analyzed the molecular mechanism responsible for resistance to sheath blight in rice, and the results lay the foundation for the development of gene mining and functional research on rice resistance to sheath blight.
Funder
Earmarked Fund for China Agriculture Research System
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献