Network meta-analysis of transcriptome expression changes in different manifestations of dengue virus infection

Author:

Winter Christine,Camarão António A. R.,Steffen Imke,Jung Klaus

Abstract

Abstract Background Several studies have been performed to study transcriptome profiles after dengue virus infections with partly different results. Due to slightly different settings of the individual studies, different genes and enriched gene sets are reported in these studies. The main aim of this network meta-analysis was to aggregate a selection of these studies to identify genes and gene sets that are more generally associated with dengue virus infection, i.e. with less dependence on the individual study settings. Methods We performed network meta-analysis by different approaches using publicly available gene expression data of five selected studies from the Gene Expression Omnibus database. The study network includes dengue fever (DF), hemorrhagic fever (DHF), shock syndrome (DSS) patients as well as convalescent and healthy control individuals. After data merging and missing value imputation, study-specific batch effects were removed. Pairwise differential expression analysis and subsequent gene-set enrichment analysis were performed between the five study groups. Furthermore, mutual information networks were derived from the top genes of each group comparison, and the separability between the three patient groups was studied by machine learning models. Results From the 10 possible pairwise group comparisons in the study network, six genes (IFI27, TPX2, CDT1, DTL, KCTD14 and CDCA3) occur with a noticeable frequency among the top listed genes of each comparison. Thus, there is an increased evidence that these genes play a general role in dengue virus infections. IFI27 and TPX2 have also been highlighted in the context of dengue virus infection by other studies. A few of the identified gene sets from the network meta-analysis overlap with findings from the original studies. Mutual information networks yield additional genes for which the observed pairwise correlation is different between the patient groups. Machine learning analysis shows a moderate separability of samples from the DF, DHF and DSS groups (accuracy about 80%). Conclusions Due to an increased sample size, the network meta-analysis could reveal additional genes which are called differentially expressed between the studied groups and that may help to better understand the molecular basis of this disease.

Funder

Stiftung Tierärztliche Hochschule Hannover (TIHO)

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3