Comparative genomics of smut fungi suggest the ability of meiosis and mating in asexual species of the genus Pseudozyma (Ustilaginales)

Author:

Steins LenaORCID,Guerreiro Marco AlexandreORCID,Duhamel Marine,Liu Fei,Wang Qi-Ming,Boekhout Teun,Begerow Dominik

Abstract

Abstract Background The Ustilaginales comprise hundreds of plant-parasitic fungi with a characteristic life cycle that directly links sexual reproduction and parasitism: One of the two mating-type loci codes for a transcription factor that not only facilitates mating, but also initiates the infection process. However, several species within the Ustilaginales have no described parasitic stage and were historically assigned to the genus Pseudozyma. Molecular studies have shown that the group is polyphyletic, with members being scattered in various lineages of the Ustilaginales. Together with recent findings of conserved fungal effectors in these non-parasitic species, this raises the question if parasitism has been lost recently and in multiple independent events or if there are hitherto undescribed parasitic stages of these fungi. Results In this study, we sequenced genomes of five Pseudozyma species together with six parasitic species from the Ustilaginales to compare their genomic capability to perform two central functions in sexual reproduction: mating and meiosis. While the loss of sexual capability is assumed in certain lineages and asexual species are common in Asco- and Basidiomycota, we were able to successfully annotate potentially functional mating and meiosis genes that are conserved throughout the whole group. Conclusion Our data suggest that at least the key functions of a sexual lifestyle are maintained in the analyzed genomes, challenging the current understanding of the so-called asexual species with respect to their evolution and ecological role.

Funder

Universität Hamburg

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3