Abstract
Abstract
Background
Salmonella enterica is a leading cause of foodborne illness worldwide resulting in considerable public health and economic costs. Testing for the presence of this pathogen in food is often hampered by the presence of background microflora that may present as Salmonella (false positives). False positive isolates belonging to the genus Citrobacter can be difficult to distinguish from Salmonella due to similarities in their genetics, cell surface antigens, and other phenotypes. In order to understand the genetic basis of these similarities, a comparative genomic approach was used to define the pan-, core, accessory, and unique coding sequences of a representative population of Salmonella and Citrobacter strains.
Results
Analysis of the genomic content of 58 S. enterica strains and 37 Citrobacter strains revealed the presence of 31,130 and 1540 coding sequences within the pan- and core genome of this population. Amino acid sequences unique to either Salmonella (n = 1112) or Citrobacter (n = 195) were identified and revealed potential niche-specific adaptations. Phylogenetic network analysis of the protein families encoded by the pan-genome indicated that genetic exchange between Salmonella and Citrobacter may have led to the acquisition of similar traits and also diversification within the genera.
Conclusions
Core genome analysis suggests that the Salmonella enterica and Citrobacter populations investigated here share a common evolutionary history. Comparative analysis of the core and pan-genomes was able to define the genetic features that distinguish Salmonella from Citrobacter and highlight niche specific adaptations.
Publisher
Springer Science and Business Media LLC
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献