Generalizability of machine learning in predicting antimicrobial resistance in E. coli: a multi-country case study in Africa

Author:

Nsubuga Mike,Galiwango Ronald,Jjingo Daudi,Mboowa Gerald

Abstract

Abstract Background Antimicrobial resistance (AMR) remains a significant global health threat particularly impacting low- and middle-income countries (LMICs). These regions often grapple with limited healthcare resources and access to advanced diagnostic tools. Consequently, there is a pressing need for innovative approaches that can enhance AMR surveillance and management. Machine learning (ML) though underutilized in these settings, presents a promising avenue. This study leverages ML models trained on whole-genome sequencing data from England, where such data is more readily available, to predict AMR in E. coli, targeting key antibiotics such as ciprofloxacin, ampicillin, and cefotaxime. A crucial part of our work involved the validation of these models using an independent dataset from Africa, specifically from Uganda, Nigeria, and Tanzania, to ascertain their applicability and effectiveness in LMICs. Results Model performance varied across antibiotics. The Support Vector Machine excelled in predicting ciprofloxacin resistance (87% accuracy, F1 Score: 0.57), Light Gradient Boosting Machine for cefotaxime (92% accuracy, F1 Score: 0.42), and Gradient Boosting for ampicillin (58% accuracy, F1 Score: 0.66). In validation with data from Africa, Logistic Regression showed high accuracy for ampicillin (94%, F1 Score: 0.97), while Random Forest and Light Gradient Boosting Machine were effective for ciprofloxacin (50% accuracy, F1 Score: 0.56) and cefotaxime (45% accuracy, F1 Score:0.54), respectively. Key mutations associated with AMR were identified for these antibiotics. Conclusion As the threat of AMR continues to rise, the successful application of these models, particularly on genomic datasets from LMICs, signals a promising avenue for improving AMR prediction to support large AMR surveillance programs. This work thus not only expands our current understanding of the genetic underpinnings of AMR but also provides a robust methodological framework that can guide future research and applications in the fight against AMR.

Publisher

Springer Science and Business Media LLC

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3