Author:
Nsubuga Mike,Galiwango Ronald,Jjingo Daudi,Mboowa Gerald
Abstract
Abstract
Background
Antimicrobial resistance (AMR) remains a significant global health threat particularly impacting low- and middle-income countries (LMICs). These regions often grapple with limited healthcare resources and access to advanced diagnostic tools. Consequently, there is a pressing need for innovative approaches that can enhance AMR surveillance and management. Machine learning (ML) though underutilized in these settings, presents a promising avenue. This study leverages ML models trained on whole-genome sequencing data from England, where such data is more readily available, to predict AMR in E. coli, targeting key antibiotics such as ciprofloxacin, ampicillin, and cefotaxime. A crucial part of our work involved the validation of these models using an independent dataset from Africa, specifically from Uganda, Nigeria, and Tanzania, to ascertain their applicability and effectiveness in LMICs.
Results
Model performance varied across antibiotics. The Support Vector Machine excelled in predicting ciprofloxacin resistance (87% accuracy, F1 Score: 0.57), Light Gradient Boosting Machine for cefotaxime (92% accuracy, F1 Score: 0.42), and Gradient Boosting for ampicillin (58% accuracy, F1 Score: 0.66). In validation with data from Africa, Logistic Regression showed high accuracy for ampicillin (94%, F1 Score: 0.97), while Random Forest and Light Gradient Boosting Machine were effective for ciprofloxacin (50% accuracy, F1 Score: 0.56) and cefotaxime (45% accuracy, F1 Score:0.54), respectively. Key mutations associated with AMR were identified for these antibiotics.
Conclusion
As the threat of AMR continues to rise, the successful application of these models, particularly on genomic datasets from LMICs, signals a promising avenue for improving AMR prediction to support large AMR surveillance programs. This work thus not only expands our current understanding of the genetic underpinnings of AMR but also provides a robust methodological framework that can guide future research and applications in the fight against AMR.
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13:1057–98.
2. Refugees UNHC. for. Refworld| Transforming our world: the 2030 Agenda for Sustainable Development. Refworld, https://www.refworld.org/docid/57b6e3e44.html (accessed 27 September 2023).
3. 160518_Final paper_with. cover.pdf, https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (accessed 27 September 2023).
4. Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55.
5. Nabadda S, Kakooza F, Kiggundu R, et al. Implementation of the World Health Organization Global Antimicrobial Resistance Surveillance System in Uganda, 2015–2020: mixed-methods study using National Surveillance Data. JMIR Public Health Surveill. 2021;7:e29954.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献