Author:
Ruan Qian,Bai Xiaoming,Wang Yizhen,Zhang Xiaofang,Wang Baoqiang,Zhao Ying,Zhu Xiaolin,Wei Xiaohong
Abstract
Abstract
Background
Alfalfa (Medicago sativa. L) is one of the best leguminous herbage in China and even in the world, with high nutritional and ecological value. However, one of the drawbacks of alfalfa is its sensitivity to dry conditions, which is a global agricultural problem. The objective of this study was to investigate the regulatory effects of endogenous nitric oxide (NO) on endogenous hormones and related miRNAs in alfalfa seedling leaves under drought stress. The effects of endogenous NO on endogenous hormones such as ABA, GA3, SA, and IAA in alfalfa leaves under drought stress were studied. In addition, high-throughput sequencing technology was used to identify drought-related miRNAs and endogenous NO-responsive miRNAs in alfalfa seedling leaves under drought stress.
Result
By measuring the contents of four endogenous hormones in alfalfa leaves, it was found that endogenous NO could regulate plant growth and stress resistance by inducing the metabolism levels of IAA, ABA, GA3, and SA in alfalfa, especially ABA and SA in alfalfa. In addition, small RNA sequencing technology and bioinformatics methods were used to analyze endogenous NO-responsive miRNAs under drought stress. It was found that most miRNAs were enriched in biological pathways and molecular functions related to hormones (ABA, ETH, and JA), phenylpropane metabolism, and plant stress tolerance.
Conclusion
In this study, the analysis of endogenous hormone signals and miRNAs in alfalfa leaves under PEG and PEG + cPTIO conditions provided an important basis for endogenous NO to improve the drought resistance of alfalfa at the physiological and molecular levels. It has important scientific value and practical significance for endogenous NO to improve plant drought resistance.
Publisher
Springer Science and Business Media LLC
Reference84 articles.
1. Demirkol G. The role of BADH gene in oxidative, salt, and drought stress tolerances of white clover. Turk J Bot. 2020;44:214–21.
2. Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol. 2003;6:410–7.
3. Neumann PM. Coping mechanisms for crop plants in drought-prone environments. Ann Botany. 2008;101:901–7.
4. Jaleel CA, Manivannan P, Wahid A, Farooq M, Somasundaram R, Panneerselvam R. Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agri Biol. 2009;11:100–5.
5. Levitt J. Responses of plants to environmental stress: chilling, freezing and high temperature stresses. 2nd ed. New York: Academic Press; 1980. p. 1980.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献